

COURSE NOTES

Object -Oriented Design | 2

Copyright © 2017 University of Alberta.

All material in this course, unless otherwise noted, has been
developed by and is the property of the University of Alberta. The
university has attempted to ensure that all copyright has been
obtained. If you believe that something is in error or
has been omitted, please contact us.

Reproduction of this material in whole or in part is acceptable,
provided all University of Alberta logos and brand markings remain
as they appear in the original work.
Version 0.1.0

Object -Oriented Design | 3

TABLE OF CONTENTS
Course Overview 4
Module 1: Object-oriented analysis and design 5

Object-Oriented Thinking 5
Design in the Software Process 7

Requirements 8
Design 9
Compromise in Requirements and Design 12

Design for Quality Attributes 13
Trade-offs 13
Context and Consequences 14
Satisfying Qualities 14
Compromise 16

Class Responsibility Collaborator 17
CRC Cards 17
Prototyping and Simulation 18

Module 2: Object-Oriented Modelling 20
Creating Models in Design 21
Evolution of Programming Languages 23
Four Design Principles 29

Abstraction 29
Encapsulation 31
Decomposition 33
Generalization 35

Design Structure in Java and UML Class Diagrams 36
Abstraction 37
Encapsulation 39
Decomposition 41
Generalization 46

Module 3: Design Principles 57
Evaluating Design Complexity 57

Coupling 58
Cohesion 59

Separation of Concerns 59
Information Hiding 65
Conceptual Integrity 68
Generalization Principles 70
Specialized UML class diagrams 73

UML Sequence Diagrams 73
UML State Diagrams 77

Model Checking 79
Course Resources 81

Course References 81
Glossary 83

Object -Oriented Design | 4

COURSE OVERVIEW

This course examines object-oriented design as part of the
foundation for becoming an experienced software architect. The
material starts with an introduction to object-oriented thinking,
examining the role of design and quality attributes in the software
development process. This will also include an overview of the Class
Responsibility Collaborator cards technique.

The course then transitions into object-oriented analysis and design.
Building on the material presented in the first module, you will learn
about object-oriented modelling, particularly how design principles
are communicated and expressed in Java and Unified Modelling
Language (UML).

The last section of this course will focus on the more complex
aspects of design principles that support object-oriented design,
which must be understood to create flexible, reusable, and
maintainable software. Some more specialized UML diagrams are
also explained.

This course assumes basic understanding of the programming
language Java.

Upon completion of this course, you will be able to:

1) Explain object-oriented analysis and design.
2) Engage in object-oriented modelling.
3) Explain design principles for object-oriented

programming.

Object-Oriented Design | 5 Object-Oriented Design | 5

MODULE 1: OBJECT-ORIENTED ANALYSIS AND DESIGN

Object-Oriented Thinking

Object-oriented modelling is a major topic in this specialization.
Before we can discuss this topic in depth, it is important to learn
how to think about problems and concepts as object oriented.

You probably associate the term “object-oriented” with coding and
software development. While that is true, the notion of being
object-oriented can apply outside of the role of a developer.
Object-oriented thinking involves examining the problems or
concepts at hand, breaking them down into component parts, and
thinking of those as objects. For example, a tweet on Twitter or a
product on an online shopping website could be considered
objects.

When translated to object-oriented modelling, object-oriented
thinking involves representing key concepts through objects in your
software. Note that concepts are broad in nature. Even instances of
people, places, or things can be distinct objects in software.

Objects may have specific details associated with them, which are
relevant to users. For example, a person object may have details
such as name, age, gender, and occupation. A place object may
have a size, or a name. An inanimate object may have dimensions or
a colour.

Upon completion of this module, you will be able to:

(a) Explain object-oriented thinking.
(b) Understand the role of design and communication in the

software process as well as the link between these concepts
and the use of diagrams.

(c) Design for quality attributes.
(d) Model Class Responsibility Collaborator (CRC) cards.

Object-Oriented Design | 6 Object-Oriented Design | 6

Objects might also have behaviours or responsibilities associated
with them. For example, a person may have associated behaviours
such as sitting down or typing. An electronic device may be
responsible to power on or off, or to display an image.

By using objects to represent things in your code, the code stays
organized, flexible, and reusable.

• Objects keep code organized by putting related details and
specific functions in distinct, easy-to-find places. In the above
examples, the details of the objects stay associated with the
objects themselves.

• Objects keep code flexible, so details can be easily changed
in a modular way within the object, without affecting the rest
of the code. In the above example of a person object, a
person’s details such as occupation may change, and not
affect the rest of the code.

• Objects allow code to be reused, as they reduce the amount
of code that needs to be created, and keeps programs
simple.

Objects are self-aware in software production, even if they are
inanimate objects. For example, a mobile phone “knows” its
specifications. Similarly, in object-oriented modelling, an object
such as a chair would know its dimensions and location.

In object-oriented thinking, often everything is considered an
object, even if animate or live. And objects are all self-aware, even if
inanimate.

Object-Oriented Design | 7 Object-Oriented Design | 7

It is good practice to prepare for object-oriented design by
accustoming yourself to thinking about the world around you in
terms of objects, and the attributes those objects might have.

Design in the Software Process

When software is developed, it generally goes through a process.
In simple terms, a process takes a problem and creates a solution
that involves software. A process is generally iterative. These
iterations consist of taking a set of requirements based on the
identified problem(s) and using them to create conceptual design
mock-ups and technical design diagrams, which can then be used
to create a working software implementation, which must also pass
testing. This process is repeated for each set of requirements,
eventually creating a complete solution for the project.

Many projects fail when this process is skipped over, especially
when work immediately begins with coding, and there is a lack of
understanding of the requirements and design.

DID YOU KNOW?

A good exercise to help you start object-oriented thinking is to look at
the room around you and identify what might be objects. For example,
you might see a computer, a person, or some kind of furniture. These
all have their own specific details and may have behaviours or
responsibilities that would be relevant to a user of that object. For a
computer system, details might include operating software or display
resolution. Responsibilities might include turning on and off, or
displaying a screen.

Even the room itself is an object! It may have a seating capacity, a room
number, or a purpose that provide specific details and responsibilities
to the room as an object.

What objects are around you? What kinds of details and behaviours
might they have?

Object-Oriented Design | 8 Object-Oriented Design | 8

It is important to allot time to form the requirements and design,
even if they are not perfectly established. The work of coding relies
on certain assumptions, and it can be difficult to change those
assumptions once coding has begun. Requirements and design
activities help you to understand what assumptions you need so that
you create the right product.

Let us briefly examine the steps of requirements and design
activities in the software process. These steps will require you to
think like an architect, so you will need to consider the structure and
behaviour of your software. By the end of this lesson you will
understand that design work involves outlining a solution and it may
include evaluating different alternatives.

Requirements

Requirements are conditions or capabilities that must be
implemented in a product, based on client or user request. They are
the starting point of a project—you must understand what your client
wants.

However, in order to elicit requirements, it is important to ask for
more than simply the client’s vision. Instead, eliciting requirements
involves actively probing the client vision, clarifying what may not
have been told, and asking questions about issues the client may
not have even considered. This allows you to understand the full
scope of what you to build and what your client wants in a product
before you actually start coding.

In addition to establishing specific needs for the project, it is also
important to establish potential trade-offs the client may need to
make in the solution. For example, a client may decide to sacrifice a
feature in order to ensure that a program runs faster, if speed is an
important need.

DID YOU KNOW?

In a survey from The Standish Group, 13% of respondents noted
incomplete requirements impaired their projects! Diving straight into
implementation work is a leading cause of project failure.

Object-Oriented Design | 9 Object-Oriented Design | 9

Once requirements and trade-offs are established, they may serve
as the foundation for design.

To better understand requirements, imagine you are an architect
building a house. Requirements allow you to understand what a
homeowner wants in a house before you start building. The
homeowner may tell you what rooms they want, but you may need
to ask follow-up questions about what rooms may be missing from
their list, what size the house and rooms might be, any constraints
on the house based on restrictions, how clients want rooms to be
placed, or what direction the house should face. These help you
better understand what you will be building.

Design

When the initial set of requirements has been created, the next step
in the process is to produce a conceptual design and a technical
design. This results in the creation of two different kinds of artifacts:
conceptual mock-ups and technical diagrams.

Conceptual Design

Conceptual designs are created with an initial set of requirements
as a basis. The conceptual design recognizes appropriate
components, connections, and responsibilities of the software
product. However, more specific technical details are deferred until
the technical design. Conceptual designs outline the more high-
level concepts of your final software product.

Conceptual designs are expressed or communicated through
conceptual mock-ups. These are visual notations that provide initial
thoughts for how requirements will be satisfied. Mock-ups for
software involving user interfaces are often presented as
wireframes, which are a kind of blueprint or basic visual
representation of the product. See the example below of a
wireframe mock-up for a web page. Whether for user interfaces or
for the software product itself, conceptual mock-ups can be hand-
drawn sketches or drawings made using computer tools.
Conceptual mock-ups help to clarify design decisions with clients
and users by providing a simple way to illustrate and discuss how a
product will work.

Object-Oriented Design | 10 Object-Oriented Design | 10

Mock-ups illustrate major components and connections, or relations
between the components. Once you start to create a mock-up, you
may more easily see what components are missing or may not work.
These flaws would require further clarification with your client or
involve additional conceptual design work. Every component also
has a task it needs to perform. This is known as its responsibility.
Mock-ups do not outline technical details, because that falls outside
the scope of conceptual design.

For example, let us return to the metaphor of building a house. The
components for the architectural example of building a house might
be: the lot the house will be built on, the house, and rooms inside
the house. Connections might be how rooms are accessible to each
other. The house has the responsibility of providing enough power,
water, and support for all the components within it. Rooms in the
house, such as the kitchen, may also have responsibilities, such as
providing space for storing kitchenware, appliances, food supplies,
plus power and water for meal preparation. However, specifics
about wiring and plumbing are not mentioned in the conceptual
design. These technical details cannot be fully addressed until the
conceptual mock-ups are completely understood. For example, the
size of the electrical distribution panel for the house will require
adding up the power requirements of each of the rooms.

Object-Oriented Design | 11 Object-Oriented Design | 11

Best practice is to form the conceptual design before moving on to
the technical design. The clearer the conceptual design, the better
the technical design, and the more likely your software will be built
right.

Technical Design

Technical designs build on conceptual designs and requirements to
define the technical details of the solution. In the conceptual design,
the major components and connections as well as their associated
responsibilities of the software being developed are outlined. The
technical design brings this information to the next stage—it aims to
describe how these responsibilities are met. The technical design is
not finished until each component has been refined to be specific
enough to be designed in detail.

In order to accomplish this, technical designs begin by splitting
components into smaller and smaller components that are specific
enough to be designed in detail. By breaking down components
more and more into further components, each with specific
responsibilities, you get down to a level where you can do a
detailed design of a particular component. The final result is that
each component will have their technical details specified.

In order to communicate technical design, technical diagrams are
used. Technical diagrams visualize how to address specific issues
for each component, as conceptual mock-ups are generally not
specific enough to capture this information. There are many
different technical diagrams that can be used to describe the
structure and behaviour of components, which will be addressed
later on in this specialization. Technical diagrams therefore help co-
ordinate development work.

To continue with the architectural example used throughout this
lesson, imagine having to design a kitchen. A kitchen is a
component of a house on its own, but it will require further smaller
components, such as flooring. The technical design may indicate
that the flooring will need to be made of a material that is easy to
clean, particularly if the client plans on doing a lot of cooking—
cooking can be a messy business!

Object-Oriented Design | 12 Object-Oriented Design | 12

Compromise in Requirements and Design

When in the design phase, there may need to be compromises in
creating an acceptable solution. Constant communication and
feedback is key to creating the right solution that meets client needs
and works within any restrictions that may exist.

Drawing on the architectural example used throughout this lesson,
imagine the client would like an open kitchen in their house that has
no obstructions between it and the dining room. But what if a post
and beam is needed in that area to support the second floor of the
house? The homeowner and the project will need to work out a
compromise in that situation.

Designs will need to be reworked if components, connections, and
the responsibilities of the conceptual design prove impossible to
achieve in the technical design, or if they fail to meet requirements.
It is important to continually check with clients that conceptual
mock-ups capture what they want. It is easier to re-design in the
planning stages, than once coding has started.

Larger systems generally require more design time. There are more
components, connections, and responsibilities to keep track of in
larger systems. And as these components themselves are large,
they may need to be refined down to smaller components before
their design can be detailed.

Once a feasible design has been agreed upon, the technical
diagrams become the basis for constructing the intended solution.
Components at this stage may be refined enough to become
collections of functions, classes, or other components. These pieces
become a more manageable problem that developers can
individually implement.

There are many design techniques that may be used to get the most
out of the design process. The rest of this specialization will examine
those techniques.

Object-Oriented Design | 13 Object-Oriented Design | 13

Design for Quality Attributes

When developing software, it is important to take a broad view on
how to achieve the desired requirements. This lesson examines how
competing ideals, roles and perspectives, potential trade-offs, and
project realities need to be taken into account and balanced in
software design.

Trade-offs

This course has reviewed the importance of requirements and
design in creating software. Sometimes, there are restrictions on
design that require compromise. Besides software requirements
based on desired functionality, there are also quality attributes to
define how well this functionality must work. But your decisions may
also involve trade-offs in different quality attributes, such as
performance, convenience, and security, and these attributes need
to be balanced.

For example, it is important to consider how quality attributes can
compete in a proposed solution under different situations. Then,
taking this into account and weighing it against the requirements of
the product, a suitable compromise can be determined. This
balancing act is an ongoing constant for software architecture.
Software architects must find the best balance between quality
attributes—often by evaluating which one is more important.
Deadlines can also influence what is feasible to do within a certain
time frame.

Let’s consider, for example, designing a front door to a house.
Security is a quality attribute that might be important, but if you add
too many locks to the door, it may be difficult to open easily and will
become inconvenient to use. A good design should balance
security with convenience and performance.

Object-Oriented Design | 14 Object-Oriented Design | 14

Context and Consequences

Context provides important information when deciding on the
balance of qualities in design. For example, software that stores
personal information, which the public can access, may have
different security requirements than software that is only used by
corporate employees. In order to establish context, it is important to
talk to stakeholders.

Software design also must consider the consequences. Sometimes,
choices made in software design have unintended consequences.
For example, an idea that seems to work fine for a small amount of
data may be impractical for large amounts of data.

A good practice is to seek other perspectives on technical designs
for a more well-rounded implementation. This can be done by
asking other developers for their opinion, or by having a design
review session. It is also good practice to test a system carefully
before fully implementing a system. During the design process, you
might consider prototyping alternative ideas and running tests to
see what works best. Tests can help catch unintended
consequences. For example, testing with both small and large
amounts of data in the above example might reveal the system
limitations.

Satisfying Qualities

Qualities are achieved through satisfying functional and non-
functional requirements, which in turn are the basis for the design
process.

Functional requirements describe what the system or application is
expected to do. A key quality to achieve by satisfying a functional
requirement is that of correctness. For example, if you are designing
a music app, the app must be able to download and play a song.
The design needs to be able to outline a solution that correctly
meets this requirement.

Object-Oriented Design | 15 Object-Oriented Design | 15

Non-functional requirements specify how well the system or
application does what it does. Non-functional requirements to
satisfy might include performance, resource usage, and efficiency;
these requirements can be measured from the running software.
For example, the music app may have non-functional requirements
to download music only to a certain memory limit. Other qualities
that software often satisfies in non-functional requirements include
reusability, flexibility, and maintainability. This helps inform how
well the code of software can evolve and allow for future changes.

Requirements are often incomplete at first, but are resolved with
further interactions with clients and end users.

Instructor’s Note:
If you are interested in learning more about functional and
non-functional requirements, see the requirements course of
the Coursera specialization offered by the University of Alberta
on Software Product Management.

Functional and non-functional requirements are important to satisfy,
but there may be important constraints and limitations that will lead
to compromises. For this reason, it is important to communicate and
determine what is acceptable to stakeholders. Consider this
example: all cars meet the functional requirement of providing
transportation; however, non-functional requirements and the
emphasis on certain qualities can vastly change the final product—
different accelerations, handling, weight, and fuel economy can
make the difference between a minivan and a sports car.

Reviews and tests should also be used to verify that required
qualities on design and software implementation are satisfied.
Some qualities may also be validated with feedback from end users.

Instructor’s Note:
If you are interested in learning more about reviews, see the
reviews course of the Coursera specialization offered by the
University of Alberta on Software Product Management.

Object-Oriented Design | 16 Object-Oriented Design | 16

Compromise

In addition to balancing qualities and meeting functional
requirements when designing software, it is important to consider
multiple perspectives. Software must satisfy qualities that matter to
users as well as developers. In other words, how the software
structure is organized may affect the quality of performance, as
understood by users, and the qualities of reusability and
maintainability, as understood by developers.

Below are some common trade-offs in qualities for software design:

• Performance and maintainability – High performance code
may be less clear and less modular, making it harder to
maintain. Alternately, extra code for backward compatibility
may affect both performance and maintainability.

• Performance and security – Extra overhead for high security
may lessen performance.

Balance between qualities must be understood and taken into
account during design. It is important to prioritize and understand
what qualities are needed. A good question to ask to help you
determine what compromises can be made is: Is there a way to cut
back on a certain quality to balance another?

It is also important to consider the constraints by project realities on
your project. To develop the product, qualities must be balanced
with resources available such as cost, time, and manpower.

DID YOU KNOW?

Some common qualities to take into account in software design
include: performance, maintainability, security, and backwards
compatibility.

Object-Oriented Design | 17 Object-Oriented Design | 17

Class Responsibility Collaborator

So far, this module has reviewed the process of eliciting
requirements and using conceptual design to gather initial thoughts
on how to satisfy those requirements in software development.
Components, connections, and responsibilities for some
requirements are established during this stage.

This module has also examined how components and connections
are refined through the technical design process, and by taking
quality attributes into account, in order to establish technical details.
This allows components and connections to be more easily
implemented.

This next lesson presents an important technique to help represent
the components, responsibilities, and connections at a high level
when forming the conceptual design. This technique is the use of
Class, Responsibility, Collaborator (CRC) cards. CRC cards help
record and organize components into classes, identify component
responsibilities, and determine how they collaborate with each
other. Therefore, they also help refine the components in your
software design.

CRC Cards

During the process of conceptual design, it is helpful not only to
identify components, responsibilities, and connections but also to
represent them. One technique is to use Class, Responsibility,
Collaborator (CRC) cards.

CRC cards are used to record, organize, and refine the components
of system design. They can be compared to note cards, which are
used to organize talking points. CRC cards are designed with three
sections: the class name at the top of the card, the responsibilities
of the class on the left side of the card, and the collaborators on
the right side of the card. See the image below for an example of
what a CRC card might look like, about the size of a physical index
card.

Object-Oriented Design | 18 Object-Oriented Design | 18

Class Name

Responsibilities

Collaborators

To keep track of each candidate component and its responsibilities
using a CRC card, you place a component’s name in the class name
section, and the responsibilities in the responsibilities section.
Connections are captured in the collaborators section. Connections
or collaborators indicate other classes that the class at the top of the
card interacts with to fulfill its responsibilities. These steps are
repeated iteratively and new cards are created until all the classes,
responsibilities, and collaborators are identified for a system.

In system design, CRC cards has a purpose—it forces designers to
keep breaking components down into smaller components and
classes that can be individually described on a card.

Prototyping and Simulation

The use of CRC cards is a simple system that has many advantages.
They are cheap, editable, and widely available. They help sort
information into manageable pieces.

A key advantage of using CRC cards is that they allow you to
physically reorganize your design. As each of the components are
represented by a card, you can move related cards together, or
situate cards to suggest relationships. This allows you to
theoretically explore how your system will work and to identify any
shortcomings in the design.

You can also experiment with moving these cards around in new
orders and analyzing the resulting consequences, allowing you to
play with alterative designs. This means that CRC cards can be used
to prototype and simulate a system for conceptual design.

Object-Oriented Design | 19 Object-Oriented Design | 19

When you develop designs, these are sometimes referred to as CRC
models. CRC cards should be organized by placing closely
collaborating components together. This makes it easier to
understand the relationships or connections between classes or
components.

CRC cards are excellent tools to bring to software development
team meetings. All the cards can be placed on the table, and
facilitate a discussion or a simulation with the team of how these
classes work together with other classes to achieve their
responsibilities. This allows you to both visually explain your system
and gain potential input from other parties.

CRC cards are useful tools, but they are most powerful when used
for prototyping and simulation for conceptual design. Many other
techniques have been developed to help you design more
effectively. The rest of this specialization will focus on some of these
various design techniques.

Object-Oriented Design | 20 Object-Oriented Design | 20

MODULE 2: OBJECT-ORIENTED MODELLING

The previous module in this course provided an introduction to the
importance of design in the software development process, and
ended with explaining the advantage of using CRC cards to
complete a conceptual design.

This module will explore object-oriented modelling even further. It
will begin by examining modelling problems and how
programming languages evolved towards object orientation. Then,
the four major design principles of abstraction, encapsulation,
decomposition, and generalization will be discussed. These
principles help in problem solving and lead to developing software
that is flexible, reusable, and maintainable. They are key principles
to follow for developing a good design for your software.

This module will also explore how to express design structure in
Java code and UML class diagrams using the principles of
abstraction, encapsulation, and decomposition. Finally, it will
discuss implementation and interface inheritance within the design
principle of generalization.

Upon completion of this module, you will be able to:

(a) Describe issues in creating models for design.
(b) Understand how programming languages evolved toward object

orientation.
(c) Explain the four major design principles used in object-oriented

modelling:
a. Abstraction
b. Encapsulation
c. Decomposition
d. Generalization

(d) Express the above design principles in using UML class diagrams
and Java code.

(e) Explain and express implementation inheritance.
(f) Explain and express interface inheritance.

Object-Oriented Design | 21 Object-Oriented Design | 21

Creating Models in Design

It is important when working on a software development project not
to jump right into creating code to solve the problem. Instead,
making the right product involves understanding the full
requirements of your product and using good design.

The design step falls between understanding your requirements
and building the product. It iteratively deals with both the problem
space and the solution space. The design should also present and
describe concepts in a way that users and developers both
understand, so they may discuss using common terms.

Design is such an important step in software development, and
there have been many approaches developed over time to help
make this process easier. For example, some design strategies and
programming languages have been created for specific kinds of
problems.

One approach to help make the design process easier is the object-
oriented approach. This allows for the description of concepts in
the problem and solution spaces as objects—objects are a notion
that can be understood by both users and developers, because
object-oriented thinking applies to many fields. This shared
knowledge makes it possible for users and developers to discuss
elements of complex problems. Object-oriented programming with
object-oriented languages is therefore a popular means for solving
complex problems.

A good design does not just jump from a concept within the
problem space to dealing with it in the solution space. Object-
oriented design is no exception. As reviewed in Module 1, object-
oriented design consists of:

• Conceptual design uses object-oriented analysis to
identify the key objects in the problem and breaks down the
problem into manageable pieces.

• Technical design uses object-oriented design to further
refine the details of the objects, including their attributes and
behaviours, so it is clear enough for developers to
implement as working software.

Object-Oriented Design | 22 Object-Oriented Design | 22

These design activities happen iteratively and continuously.

The goal during software design is to construct and refine “models”
of all the objects of the software. Categories of objects involve:

• entity objects, where initial focus during the design is
placed in the problem space

• control objects that receive events and co-ordinate actions
as the process moves to the solution space

• boundary objects that connect outside services to your

system, as the process moves towards the solution space

Software models help you understand and organize the design
process for the objects. Design principles and guidelines are
applied to complex problems: to simplify objects in the model and
break them down into smaller parts and to look for commonalities
that can be handled consistently. Models should be continuously
critiqued and evaluated to ensure the original problem is addressed
and qualities such as reusability, flexibility, and maintainability are
satisfied. Models also serve as design documentation for your
software. In fact, models are often mapped to skeletal source code,
particularly for an object-oriented language like Java.

Software models are often expressed in a visual notation, called
Unified Modelling Language (UML). Object-oriented modelling
has different kinds of models or UML diagrams that can be used to
focus on different software issues. For example, a structural model
might be used to describe what objects do and how they relate.
This is analogous to a scale model of a building, which is used in
architecture.

Now that you have an understanding of the roles models play in
design and of the relationship between models and coding
languages, the next lesson will turn to reviewing the history of
programming languages.

Object-Oriented Design | 23 Object-Oriented Design | 23

Evolution of Programming Languages

Language is the word that we use to describe a system for
communicating thoughts and ideas with each other. Writing,
reading, speaking, drawing pictures, and making gestures are all
part of language! Languages must be continually evolving in order
to stay “alive” and be used by people.

Programming languages are no exception to this, and just like
traditional languages, they have evolved over time. Often,
programming languages evolved to provide solutions or more
effective solutions to needs or problems that the current
programming languages cannot meet. New languages or ideas may
also arise to address new data structures. The ideas used in
computer languages caused shifts in programming paradigms.

It is important to know the history of programming paradigms. As a
software developer, you may still encounter systems that use older
languages and design paradigms. As well, although object-oriented
programming is a powerful tool, there may be problems that are
best or more efficiently solved with another paradigm. Finally, it is
important to understand this history, as new languages may not
force new structures but only modify existing ones. Some old ways
of doing something or old paradigms may be expanded on so
much that the new structures may be difficult to recognize.
Knowledge of the past may help.

DID YOU KNOW?

An example of design strategies and programming languages suited
for specific kinds of problems that you may be familiar with is top-down
programming.

Top-down programming is generally used to solve data- processing
problems. This design strategy consists of mapping processes in the
problem to routines to be called, beginning with the “top” process.
Generally, this design is expressed through a tree of routines.

These routines would be implemented in a programming language
that supported subroutines.

Object-Oriented Design | 24

Below is a table summarizing major programming paradigms in the history of programming languages.
Programming
Language

Time
period

Solutions afforded
by Programming Language

Unresolved issues
of Programming Language

COBOL
Fortran

1960s

COBOL and Fortran followed an imperative paradigm that broke up large
programs into smaller programs called subroutines.

As computer processing time was costly, it was important to maximize
processing performance. To solve this problem, global data was used so
that data was located all in one place in the computer’s memory and
accessible anywhere for a program. This meant that subroutines only had to
go to one place to access variables.

If changes are made to the data,
then subroutines might run into
cases where the global data is not
what was expected. Better data
management is needed to avoid
these problems.

Global
Data

Subprogram
A

Subprogram
B

Subprogram
C

Object-Oriented Design | 25

Programming
Language

Time
period

Solutions afforded
by Programming Language

Unresolved issues
of Programming Language

Algol 68
Pascal

Early
1970s

In the 1960s, global data was used. However, any changes to the data may
result in issues for the subroutines.

The solution introduced the idea of scopes and local variables – subroutines
or procedures could each have their own variables.

These languages supported the use of abstract data type, which is defined
by the programmer and not built into the language. This is a grouping of
related information that is denoted with a type. This allows information to be
organized in a meaningful way.

By having data bundled and passed into different procedures through the
use of data types, this means that a procedure can be the only one that
modifies a piece of data. There no longer needs to be a worry that data will
be altered by another procedure.

Towards the mid-1970s, computer
processing time became less
expensive. At the same time, human
labour was more expensive and
became the more time-consuming
factor in software development. The
advances in computer processing
allowed more complex problems to
be asked of computers. But it also
meant that software was quickly
growing, and having one file to
maintain programs was difficult to
maintain.

Global
Data

Procedure
A

Procedure
B

Procedure C
Nested Procedure

Local Data

Object-Oriented Design | 26

Programming
Language

Time
period

Solutions afforded
by Programming Language

Unresolved issues
of Programming Language

C
Modula-2

Mid-
1970s

By the mid-1970s computers were faster and able to tackle more complex
problems. However, this meant that the programs of the past were quickly
becoming too big to maintain. This led to new languages, that provided a
means to organize programs into separate files, and allow developers to
more easily create multiple, but unique, copies of abstract data types.

For example, in the programming language C, each file contained all the
associated data and functions that manipulated it, and declared what could
be accessed through a separate file called a header file.

It is not easy for an abstract data
type to inherit from another in these
languages. This means that
although as many data types as
wanted can be created, one type
cannot be declared an extension of
another.

Data

Procedure
A Procedure

B

Data

Procedure C

Modules

Object-Oriented Design | 27

Programming
Language

Time
period

Solutions afforded
by Programming Language

Unresolved issues
of Programming Language

Object-
Oriented
Programming
(Java, C++,
C#, etc.)

1980s
to
present

Although programs were become easier to manage through abstract data
types, there was still no way to for data types to inherit from each other. The
concepts of object-oriented design became popular during this time period
as a solution to these problems.

Object-oriented design seeks to:

• make an abstract data type easier to write
• structure a system around abstract data types called classes
• introduce the ability for an abstract data type to extend another

through a concept known as inheritance

Object oriented programming is the
predominant programming
paradigm now.

Data

Procedure
A Procedure

B

Data

Procedure C

Classes

Object-Oriented Design | 28

Programming
Language

Time
period

Solutions afforded
by Programming Language

Unresolved issues
of Programming Language

Under this paradigm, software systems can be built of entirely abstract data
types. This allows the system to mimic the structure of the problem—in other
words, the system can represent real-world objects or ideas more accurately.

Class definition files in object-oriented programming replace the files in C
and Modula-2. Each class defines a type with associated data and functions.
These functions are also known as methods. A class acts like a factory,
making individual objects all of a specific type. This allows data to be
compartmentalized and manipulated into its own separate classes.

Object-Oriented Design | 29
Object-Oriented Design | 29

Four Design Principles

As described in the first lesson of this module, object-oriented
programming allows you to create models of how objects are
represented in your system. However, to create an object-oriented
program, you must examine the major design principles of such
programs. Four of these major principles are: abstraction,
encapsulation, decomposition, and generalization.

Abstraction

Abstraction is one of the four major design principles that will be
examined in this lesson. Abstraction is one of the main ways that
humans deal with complexity. It is the idea of simplifying a concept
in the problem domain. Abstraction breaks a concept down into a
simplified description that ignores unimportant details and
emphasizes the essentials needed for the concept, within some
context.

An abstraction should follow the rule of least astonishment. This
rule suggests that essential attributes and behaviours should be
captured with no surprises and no definitions that fall beyond its
scope. This prevents irrelevant characteristics from becoming part
of an abstraction and helps to ensure that the abstraction makes
sense for the concept’s purpose.

Program constructs includes elements such as functions, classes,
enumerations, and methods. In object-oriented modelling,
abstraction pertains most directly to the notion of a class. When
abstraction is used to determine the essential details for some
concept, those details may be defined in a class. Any object created
from a class has the essential details to represent an instance of
some concept, but it may have some individual characteristics as
well. Think of a cookie cutter used to create gingerbread men. Each
instance of a cut cookie belongs to the class of “gingerbread men”
and share essential characteristics such as head, arms, and legs,
even if they are decorated differently.

Object-Oriented Design | 30
Object-Oriented Design | 30

Context or a specific perspective is critical when forming an
abstraction. This is because context might change the essential
characteristics of a concept. For example, consider the essential
characteristics of the concept of a person. This can be hard to
understand without context, as this concept is vague and the
person’s purpose is unknown. But, in a gaming app, the essential
characteristics of a person would be in the context of a gamer. In a
running exercise app on the other hand, the essential characteristics
of a person would be in the context of an athlete. It is up to the
designer to choose the abstraction that is most appropriate to the
context of the software development, and the context must be
understood before creating an abstraction.

The essential characteristics of an abstraction can be understood in
two ways: through basic attributes and through basic behaviours
or responsibilities.

Basic attributes are characteristics that do
not disappear over time. Although their
values may change, the attributes
themselves do not. For example, the
concept of a lion may have an age attribute.
That value may change, but the lion always
has an age attribute.

In addition to basic attributes, an abstraction
describes a concept’s basic behaviours. A
lion may have behaviours such as hunting,
eating, and sleeping. These are also

responsibilities that the lion abstraction does for its purpose of
living.

An abstraction, as explained above, should only convey a concept’s
essential attributes and behaviours. Context helps determine what is
relevant. For example, when considering the lion in a hunting
setting, it is irrelevant to consider what position the lion prefers to
sleep in. If context changes, the right abstraction may change as
well.

Object-Oriented Design | 31
Object-Oriented Design | 31

There are many benefits from the principle of abstraction. It helps to
simplify class designs, so they are more focused, succinct, and
understandable to someone else viewing them. As abstractions rely
strongly on context or perspective, it is important to carefully
consider what is relevant. Likewise, if the purpose of the system
being built, or if the problem being solved changes, it is important
to re-examine your abstractions and change them accordingly.

Encapsulation

Encapsulation is the second major design principle that will be
examined in this lesson. This principle involves a concept that allows
something to be contained in a capsule, some of which you can
access from the outside and some of which you cannot.

There are three ideas behind encapsulation. These are:

• The ability to “bundle” attribute values (or data) and
behaviours (or functions) that manipulate those values, into
a self-contained object.

• The ability to “expose” certain data and functions of that
object, which can be accessed from other objects, usually
through an interface.

• The ability to “restrict” access to certain data and functions to
only within the object.

“Bundling” occurs naturally when a class is defined for a type of
object. The principle of abstraction helps determine what attributes
and behaviours are relevant about a concept in a determined
context. The principle of encapsulation takes this a step further and
ensures that these characteristics are bundled together in the same
class.

Encapsulation therefore allows distinct objects created from a
particular class to have their own data values for the attributes and
exhibit resulting behaviours. This makes programming much easier,
as the data and the code that manipulate that data are located in
the same place.

Object-Oriented Design | 32
Object-Oriented Design | 32

An object’s data should only contain what is relevant for that object.
For example, a lion object “knows” what food it hunts but does not
know what animals live in a different continent, because that is not
relevant data. A class therefore only knows what attributes or data is
relevant to it.

A class also defines behaviours through methods. Methods
manipulate the attribute values or data in the object to achieve the
actual behaviours. Certain “methods” can be exposed or made
accessible to objects of other classes. This provides an interface to
other objects to use the class.

Integrity and Security

As one of the ideas of encapsulation is restricting access to certain
data and functions to only within an object, this naturally links
encapsulation to data integrity and the security of sensitive
information.

If certain attributes and methods are restricted from outside access,
except through specific methods, then the data cannot be changed
through variable assignments. This prevents assumptions or
dependencies from breaking for the data within an object.

Likewise, restriction of access helps keep sensitive information from
being revealed, even from queries that rely on sensitive data to
provide answers.

Changeable Implementation

Encapsulation is also a useful principle for implementing software
changes. As the ability to “expose” data is separate from the
“bundle” of attributes itself, this means that the implementation of
attributes and methods can change, but the accessible interface of a
class can remain the same. Users accessing or querying the class do
not need to worry about how the implementation works behind the
interface—they will still use the same means to access information.

Object-Oriented Design | 33
Object-Oriented Design | 33

Black box

The idea in encapsulation that supports the line of thinking in
changeable implementation is also tied to a concept known as
black box thinking. The computation steps taken within a class
never need to be known by any other class, as long as they are able
to access the interface. A class is therefore like a black box that you
cannot see into for details about how attributes are represented or
how methods compute their results. What happens in the “box” to
achieve an expected behaviour doesn’t matter, as long as it is
possible to provide inputs and obtain outputs by calling methods.

Encapsulation achieves an abstraction barrier through black box
thinking where the internal workings of a class are not relevant to
the outside world. This results in an abstraction that reduces
complexity for users of the class.

Encapsulation also increases reusability because of black box
thinking. Another class only needs to know the right method to call
to get a desired behaviour, what arguments to supply as inputs, and
what appears as outputs or effects. In other words, encapsulation
keeps software modular and easy to work with. Classes are easy to
manage, as their internal behaviour is not relevant to other classes,
as long as they can interface together.

Decomposition

Decomposition is the third major design principles that will be
examined in this lesson. It consists of taking a whole thing, and
dividing it into different parts. Alternately, decomposition can also
indicate taking separate parts with different functionalities and
combining them to create a whole. Decomposition allows problems
to broken into smaller pieces that are easier to understand and
solve.

Object-Oriented Design | 34
Object-Oriented Design | 34

The general rule for decomposition is to look at the different
responsibilities of a whole and evaluate how the whole can be
separated into parts that each have a specific responsibility. Each of
these parts are in fact separate objects that can be created from
separate classes in your design. In this way, decomposition is similar
to abstraction where you are dividing a whole into objects with
essential characteristics.

Each different kind of part within a whole can prescribe a class, so
we can keep our parts better organized and encapsulated on their
own. The class for the whole object then relates to the classes for
the constituent part objects.

The Nature of Parts

A whole might have a fixed or dynamic number of a certain type of
part. If there is a fixed number, then over the lifetime of the whole
object, it will have exactly that much of the part object. Think of an
oven with four burners. The number of burners is fixed for the oven
object. Some parts, on the other hand, may have a dynamic
number. This means the whole object may gain new instances of
those part objects over its lifetime. Think of items of food within a
refrigerator object – these might change from day to day.

Note that a part can also serve as a whole, which is made up of
further constituent parts. For example, a kitchen is a part of a house.
But the kitchen may be made up of further parts, such as an oven
and a refrigerator.

Another issue worth noting in decomposition is that whole objects
and part objects have lifetimes. Sometimes, these lifetimes are
closely related, and the part shares the same lifetime as the whole—
one cannot exist without the other. If the temperature cooling
gauge for a fridge dies, then the fridge will cease to work. But
sometimes, the part and the whole can exist independently and
have different lifetimes. For example, if an item of food goes bad in
the fridge, the fridge will still continue its function.

Whole things may also contain parts that are shared with another
whole at the same time. However, sometimes sharing a part is not
possible or intended.

Object-Oriented Design | 35
Object-Oriented Design | 35

Generalization

Generalization is the final one of the four major design principles
that will be examined in this lesson. Generalization helps reduce
redundancy when solving problems. It is a common principle used
in many disciplines outside of software development.

In coding, algorithmic behaviours are often modelled through
methods. A method allows a programmer to generalize a
behaviour, so the behavior can be applied to different input data.
This generality reduces the need to have identical code throughout
a program.

In object-oriented modelling, generalization is a main design
principle, but beyond creating a method that can be applied to
different data, object-oriented modelling achieves generalization by
classes through inheritance. In generalization we take repeated,
common, or shared characteristics between two or more classes
and factor them out into another class.

This allows you to have two kinds of classes: a parent class, and a
child class. Child classes inherit attributes and behaviours of parent
classes. This means that repeated, common, or shared
characteristics go into parent classes. Parent classes capture
general ideas and generally have broader application.

It is possible for multiple child classes to inherit from a single parent
class. Those multiple child classes will all receive these common
attributes and behaviours, although it is likely that each child class
will have additional attributes and behaviours that allow them to be
more specialized in what they can do.

In standard terminology, a parent class is known as a superclass
and a child class is called a subclass. From the above explanation,
we can understand that inheritance allows a superclass to form a
generalization and for its subclasses to be more specialized.

Parent classes save time and prevent errors, particularly when they
are used for multiple child classes. Without parent classes, systems
are not flexible, maintainable, or reusable.

Object-Oriented Design | 36
Object-Oriented Design | 36

Instructor’s Note:
A good tip to remember for naming superclasses and
subclasses – although classes can be named after anything
you want, it is good practice to name them after things you
are trying to model. This makes code easier to understand!

Generalization presents many advantages to object-oriented
modelling. Since subclasses inherit attributes and behaviours from
superclasses, this means that any changes to the code that is
common to both subclasses need only be made once in the
superclass. In other words, changes to software are easier to apply
and maintain. Another advantage is that subclasses can be easily
added without having to recreate all the common attributes and
behaviours for them, so software is easier to expand. Generalization
provides more robust software solutions and allows for more
reusable code because the same blocks of code can be used for
different classes.

Design Structure in Java and UML Class Diagrams

The design process, as explained in Module 1 of this course,
consists of both the conceptual design and the technical design.
Conceptual design, including prototyping and simulating higher-
level designs, can be visualized through CRC cards. CRC cards
make it easy to communicate with client, and they allow you to
create designs without the distraction of code. However, to guide
technical design, a more sophisticated technique that can
communicate your needs clearly to developers is needed. One
technique used for technical design is that of UML class diagram,
also known as simply a class diagram. These class diagrams provide
more detail than CRC cards and allow for easier conversion to
classes for coding and implementation.

DID YOU KNOW?

Both methods and inheritance exemplify the generalization design
principle through the D.R.Y. or “Don’t Repeat Yourself” rule.
Methods and inheritance allow developers to reuse code, resulting in
less code and repetition overall.

Object-Oriented Design | 37
Object-Oriented Design | 37

This lesson will look at how the design principles of abstraction,
encapsulation, decomposition, and generalization work with Java
and UML class diagrams.

Abstraction

The design principle of abstraction allows for the simplification of a
concept to its essentials within some context. Abstraction can be
applied at the design level using UML class diagrams. The design is
eventually turned into code.

CRC cards capture components in systems design. Components
can eventually be refined into functions, classes, or collections of
other components. As this course uses Java, where abstractions are
formed in a class, this lesson will focus on classes.

Let us look at how a CRC card might translate into a class diagram.
Below is an example of a CRC card, as abstracted for a food item in
the context of a grocery store.

Food
Know grocery ID
Know name
Know manufacturer
Know expiry date
Know price
Check if on sale

Here is the same concept as a class diagram.

Food
groceryID: String
name: String
manufacturer: String
expiryDate: Date
price: double
isOnSale() : boolean

Object-Oriented Design | 38
Object-Oriented Design | 38

Every concept or class in a class diagram is represented with a box,
as above. You will notice three sections in the box.

Class Name

Properties

Operations

• The class name is the same as the class name in your Java

class.
• The properties section is equivalent to Java’s member

variables. This section defines the attributes of the
abstraction by using a standard template for variable name
and variable type. Variable types can be classes or primitive
types.

<variable name>:<variable type>

• The operations section is equivalent to Java’s methods. This

section defines the behaviours of the abstraction, using a
standard template for the operation name, parameter list,
and return type.

<name>(<parameter list>) : <return type>

In the example above, food objects have a method to return if it is
on sale or not. This method has been named “isOnSale”. The
method will return a boolean to represent if it is on sale. A Boolean
value is either true or false. The isOnSale operation takes no
parameter, so no parameter list is included.

If you were to add a parameter to the operation, such as a date in
this case, the parameter would follow the same template as the
class diagram’s properties. The final section would read:

isOnSale(date: Date) : Boolean

Object-Oriented Design | 39
Object-Oriented Design | 39

You will notice that class diagrams distinguish a difference between
responsibilities that become properties and responsibilities that
become operations, whereas CRC cards list them together. Helping
distinguish this ambiguity makes class diagrams easier to translate
into code for a programmer.

Drawing on our food example, we can see how easy it is to turn a
class diagram into a class in Java.

public class Food {
 public String groceryID;
 public String name;
 public String manufacturer;
 public Date expiryDate;
 public double price;

 public boolean isOnSale(Date date) {

 }
}

The class name in the class diagram turns into a class in Java. The
properties turn into member variables. Operations become
methods. It is possible to use this mapping in reverse to turn code
into class diagrams.

Instructor’s Note: The above example has everything public,
meaning the member variables and methods
can be accessed from any other code besides
this class. This assumption applies for now. In
later lessons, you will learn about access
modifiers in Java for more controlled access.

Encapsulation

The design principle of encapsulation involves three ideas:

• Data and functions that manipulate that data are “bundled”
into a self-contained object.

• Data and functions of the object can be exposed or made
accessible from other objects.

• Data and functions of the object can be restricted to only
within the object.

Object-Oriented Design | 40
Object-Oriented Design | 40

In a UML class diagram, encapsulation is expressed by having all of
the object’s relevant data defined in attributes of the class, and by
providing specific methods to access those attributes.

UML class diagrams can express encapsulation. The class diagram
itself already bundles data and functions in a self-contained object.
However, access and restriction (two aspects of visibility) can be
represented as well, through the use of symbols – and +. Below is an
example of a UML class diagram for a student.

Student
-gpa: float
-degreeProgram: String

+getGPA(): float
+setGPA(float)
+getDegreeProgram(): String
+setDegreeProgram(String)

In this example, the attributes gpa and degreeProgram are hidden
from public accessibility, as indicated by the minus sign (-). In other
words, the minus sign indicates that a method or attribute is private
and can only be accessed from within the class. On the other hand,
the operations are public, as indicated by the plus sign (+). In other
words, the plus sign indicates that a method can be accessed
publicly. In this case, the public methods can be used to manipulate
the student’s GPA. This prevents the student’s GPA attribute from
being directly manipulated, and it controls the data is accessed and
changed.

Encapsulation in UML class diagrams helps you determine the
“gate” to controlling data, by using only public methods to access
the data attributes of the class. For every piece of essential data, the
use of public methods to access private data creates protection
from unexpected direct change of that data. This preserves the data
integrity.

Object-Oriented Design | 41
Object-Oriented Design | 41

There are two different kinds of methods typically used to preserve
data integrity. These are:

• Getter methods, which are used to retrieve data. These
methods typically have the format: get<Name of the
attribute>, where the attribute is the value that will be
returned through the method. Getters often retrieve private
data.

• Setter methods, which are used to change data. These
methods typically have the format: set<Name of the
attribute>, where the attribute is what will be changed
through the method. Setters often set a private attribute in a
safe way.

These kinds of methods help ensure that data is accessed in an
approved way.

Decomposition

The design principle of decomposition takes a whole thing and
divides it into different parts. It also does the reverse, and takes
separate parts with different functionalities, and combines them to
form a whole. There are three types of relationships in
decomposition, which define the interaction between the whole and
the parts:

• Association
• aggregation
• composition

All three are useful and versatile for software design. Let us examine
each of these relationships.

Object-Oriented Design | 42
Object-Oriented Design | 42

Association

Association indicates a loose relationship between two objects,
which may interact with each other for some time. They are not
dependent on each other—if one object is destroyed, the other can
continue to exist, and there can be any number of each item in the
relationship. One object does not belong to another, and they may
have numbers that are not tied to each other.
An example of an association relationship could be a person and a
hotel. A person might interact with a hotel but not own one. A hotel
may interact with many people.

Association is represented in UML diagrams as below:

Person

The straight line between the two UML objects denote that there is a
relationship between the two UML objects of person and hotel, and
that relationship is an association. The “zero dot dot star” (0…*) on
the right side of the line shows that a Person object is associated
with zero or more Hotel objects, while the “zero dot dot star” on the
left side of the line shows that a Hotel object is associated with zero
or more Person objects.

Association can be represented in Java code as well.

public class Student {
 public void play(Sport sport){
 execute.play(sport);
 }
 …
}

In this code excerpt, a student is passed a sport object to play, but
the student does not possess the sport. It only interacts with it to
play. The two objects are completely separate, but have a loose
relationship. Any number of sports can be played by a student and
any number of students can play a sport.

Hotel

0..* 0..*

Object-Oriented Design | 43
Object-Oriented Design | 43

Aggregation

Aggregation is a “has-a” relationship where a whole has parts that
belong to it. Parts may be shared among wholes in this relationship.
Aggregation relationships are typically weak, however. This means
that although parts can belong to wholes, they can also exist
independently. An example of an aggregate relationship is that of
an airliner and its crew. The airliner would not be able to offer
services without the crew. However, the airliner does not cease to
exist if the crew leave. The crew also do not cease to exist if they are
not in the airliner.

Aggregation can be represented in UML class diagrams with the
symbol of an empty diamond as below:

Airliner

In this diagram, a straight line is used again to symbolize a
relationship between the Airliner object, and the Crew Member
object. “Zero dot dot stars” (0..*) are used to show again that an
object might have a relationship with zero or more of the other
object. In this case, the “zero dot dot star” on the right side of the
line indicates that a Airliner object might have zero or more crew
members. The “zero dot dot star” on the left side of the line
indicates that a Crew Member object can be had by zero or more
Airliner objects. The empty diamond indicates which object is
considered the whole and not the part in the relationship.

Crew Member

0..* 0..*

Object-Oriented Design | 44
Object-Oriented Design | 44

Aggregation can be represented in Java code as well.

public class Airliner {
 private ArrayList<CrewMember> crew;

 public Airliner() {
 crew = new ArrayList<CrewMember>();
 }

public void add(CrewMember crewMember) {
…

}
}

In the Airliner class, there is a list of crew members. The list of crew
members is initialized to be empty and a public method allows new
crew members to be added. An airliner has a crew. This means that
an airliner can have zero or more crew members.

Object-Oriented Design | 45
Object-Oriented Design | 45

Composition

Composition is one of the most dependent of the decomposition
relationships. This relationship is an exclusive containment of parts,
otherwise known as a strong “has-a” relationship. In other words, a
whole cannot exist without its parts, and if the whole is destroyed,
then the parts are destroyed too. In this relationship, you can
typically only access the parts through its whole. Contained parts
are exclusive to the whole. An example of a composition
relationship is between a house and a room. A house is made up of
multiple rooms, but if you remove the house, the room no longer
exists.

Composition can be represented with a filled-in diamond using
UML class diagrams, as below:

House

The lines between the House object and the Room object indicates
a relationship between the two. The filled-in diamond next to the
House object means that the house is the whole in the relationship.
If the diamond is filled-in, it symbolizes that the “has-a” relationship
is strong. The two objects would cease to exist without each other.
The one “dot dot star” indicates that there must be one or more
Room objects for the House object.

Composition can be represented using Java code as well.

public class House {
 private Room room;

 public House(){
 room = new Room();
 }
}

Room

1..*

Object-Oriented Design | 46
Object-Oriented Design | 46

In this example, a Room object is created at the same time that the
House object is, by instantiating the Room class. This Room object
does not need to be created elsewhere, and it does not need to be
passed in when creating the House object. The two parts are tightly
dependent with one not being able to exist without the other.

Generalization

The design principle of generalization takes repeated, common, or
shared characteristics between two or more classes and factors
them out into another class, so that code can be reused, and the
characteristics can be inherited by subclasses.

Generalization and inheritance can be represented UML class
diagrams using a solid-lined arrow as shown below:

Animal

The solid-lined arrow indicates that two classes are connected by
inheritance. The superclass is at the head of the arrow, while the
subclass is at the tail. It is conventional to have the arrow pointing
upwards. The class diagram is structured so that superclasses are
always on top and subclasses are towards the bottom.

Lion

Object-Oriented Design | 47
Object-Oriented Design | 47

Inherited superclass’ attributes and behaviours do not need to be
rewritten in the subclass. Instead, the arrow symbolizes that the
subclass will have the superclass’ attributes and methods.
Superclasses are the generalized classes, and the subclasses are the
specialized classes.

It is possible to translate UML class diagrams into code. Let us build
on the example above.

Animal
#numberOfLegs: int
#numberOfTails: int
#name: String
+walk()
+run()
+eat()

In this diagram, the Lion class is the subclass and the Animal class is
the superclass. The subclass inherits all the attributes and
behaviours from the superclass. As explained above, it is therefore
unnecessary to put all of the superclass’ attributes and behaviours in
the subclass of the UML class diagram.

You may also notice the use of a # symbol. This symbolizes that the
Animal’s attributes are protected.

Protected attributes in Java can only be accessed by:

• the encapsulated class itself
• all subclasses
• all classes within the same package

Lion

+ Roar()

Object-Oriented Design | 48
Object-Oriented Design | 48

In Java, a package is a way to organize classes into a namespace
that represents those classes.

The UML class diagrams can be translated into code.

public abstract class Animal {
 protected int numberOfLegs;
 protected int numberOfTails;
 protected String name;

 public Animal(String petName, int legs, int
tails) {
 this.name = petName;
 this.numberOfLegs = legs;
 this.numberOfTails = tails;
 }

 public void walk() { … }
 public void run() { … }
 public void eat() { … }
}

Since the Animal class is a generalization, it should not be created
as an object on its own. The keyword abstract indicates that the
class cannot be instantiated. In other words, an Animal object
cannot be created.

The Animal class is a superclass, and any class that inherits from the
Animal class will have its attributes and behaviours. Those
subclasses that inherit from the superclass will share the same
attributes and behaviours from the Animal class. Here is the code
for creating a Lion subclass:

public class Lion extends Animal {
 public Lion(String name, int legs, int tails
) {
 super(name, legs, tails);
 }

 public void roar() { … }
}

None of the attributes and behaviours inherited from the Animal
class need to be declared. This mirrors the UML class diagram, as

Object-Oriented Design | 49
Object-Oriented Design | 49

only specialized attributes and methods are declared in the
superclass and subclass. Remember, the UML class diagram
represents our design. As inherited attributes and behaviours do
not need to be re-stated in the code, they do not need to be re-
stated in the subclass in the diagram.

Inheritance is declared in Java using the keyword extends. Objects
are instantiated from a class by using constructors. With inheritance,
if you want an instance of a subclass, you must give the superclass a
chance to prepare the attributes for the object appropriately.
Classes can have implicit constructors or explicit constructors.

Below is an example of an implicit constructor:

public abstract class Animal {
 protected int numberOfLegs;

 public void walk() { … }
}

In this implementation, we have not written our own constructor. All
attributes are assigned zero or null when using the default
constructor.

Below is an example of an explicit constructor:

public abstract class Animal {
 protected int numberOfLegs;

 public Animal(int legs) {
 this.numberOfLegs = legs;
 }
}

In this implementation, an explicit constructor will let us instantiate
an animal with as many legs we want. Explicit constructors allow you
to assign values to attributes during instantiation.

public abstract class Animal {
 protected int numberOfLegs;

 public Animal(int legs) {
 this.numberOfLegs = legs;
 }
}

Object-Oriented Design | 50
Object-Oriented Design | 50

public class Lion extends Animal {
 public Lion(int legs) {
 super(legs);
 }
}

A subclass’ constructor must class its superclass’ constructor if the
superclass has an explicit constructor. Explicit constructors of the
superclass must be referenced by the subclass; otherwise, the
superclass attributes would not be appropriately initialized. To
access the superclass’ attributes, methods, and constructors, the
subclass uses the keyword super.

Subclasses can override the methods of its superclass, meaning
that a subclass can provide its own implementation for an inherited
superclass’ method.

public abstract class Animal {
 protected int numberOfLegs;

 public void walk() {
 System.out.println("Animal is walking"
);
 }
}

public class Lion extends Animal {
 public void walk() {
 System.out.println("I'd rather nap");
 }
}

In the above example, the Lion class has overridden the Animal
class’s walk method. If asked to walk, the system would tell us that a
Lion object would rather nap.

Types of Inheritance

Java is capable of supporting several different types of inheritance.
The above examples in the lesson are implementation
inheritance.

Object-Oriented Design | 51
Object-Oriented Design | 51

In Java, only single implementation inheritance is allowed. This
means that while a superclass can have multiple subclasses, a
subclass can only inherit from a single superclass.

For example, the Animal class might be a superclass to multiple
subclasses: a Lion class, a Wolf class, or a Deer class. Each of these
classes might have specialized behaviours or characteristics, so a
Lion object knows how to roar but might not know how to howl, like
a Wolf object.

Subclasses can also be a superclass to another class. Inheritance can
trickle down through as many classes as desired.

Inheritance allows the generalization of related classes into a single
superclass, and it still allows the subclasses to retain the same set of
attributes and behaviours. This removes redundancy in the code
and makes it easier to implement changes.

Interface Inheritance

Other languages like C++ support multiple inheritance. This is
when a subclass can have two or more superclasses. Java addresses
the restriction of single implementation inheritance by offering
interface inheritance, another form of generalization. To
understand that, first some programming language and design
notions need to be explained.

A class denotes a type for its objects. The type signifies what these
objects can do through public methods. In modelling a problem, it
may be necessary to express subtyping relationships between two
types. For example, instances of a Lion class are Lion-classed
objects, which may perform specialized lion behaviours. A Lion type
may also be a subtype of an Animal type. So, a Lion object is of a
Lion type and an Animal type—a Lion object behaves like a lion and
like an animal. Therefore, a lion “is” an animal.

In Java, implementation inheritance with the keyword extends is
often used for subtyping. So, if a subclass extends a superclass, it
will behave like the superclass and like its own class. The subclass
inherits the “implementation details” of the superclass.

Object-Oriented Design | 52
Object-Oriented Design | 52

A Java interface also denotes a type, but an interface only declares
method signatures, with no constructors, attributes, or method
bodies. It specifies the expected behaviours in the method
signatures, but it does not provide any implementation details.

A Java interface may also be used for subtyping. If a class
implements an interface, then the class not only behaves like itself, it
is also expected to behave according to the method signatures
listed in the interface. The class needs to provide the method body
details for what it means to implement the interface. An interface is
like a contract to be fulfilled by implementing classes.

In implementation inheritance, there is consistency between the
superclass type and the subclass type. A subclass object is usable
anywhere in your program where you are dealing with the
superclass type. Similarly, in interface inheritance, there is
consistency between the interface type and the implementing class
type.

In Java, the keyword interface is used to indicate that one is being
defined. The letter “l” is sometimes placed before an actual name to
indicate an interface.

public interface IAnimal {
 public void move();
 public void speak();
 public void eat();
}

The interface shows that an animal has the behaviours of moving,
speaking, and eating, but these behaviours are not implemented
here, and there is no description as to how these behaviours are
performed. The interface also does not encapsulate any attributes
of the superclass—this is because attributes are not behaviours.

Instructor’s Note:
The latest Java allows default implementations of the
methods in interfaces. There are resources in the Course
Readings section of the notes if you wanted to read more
about this change!

Object-Oriented Design | 53
Object-Oriented Design | 53

In order to use an interface, you must declare that you are going to
fulfill the contract as described in the interface. The keyword in Java
for this action is implements.

public class Lion implements IAnimal {
 /* Attributes of a lion can go here */

 public void move() { … }
 public void speak() { … }
 public void eat() { … }
}

In this example, the Lion class has declared that it will implement or
describe the behaviours that are in the interface—in this case, move,
speak, and eat methods. You must have all the method signatures
explicitly declared and implemented in the class.

«interface»
Interface Name

A Java interface can describe the expected common behaviour of
multiple classes, without directly implementing that behavior. An
interface can be implemented by multiple classes, with each
implementing class defining their own, appropriate version of the
behaviour. Also, a class may implement multiple different interfaces.

Interfaces can be drawn in a similar way to classes in UML diagrams.
Interfaces are explicitly noted using guillemets, or French quotes, to
surround the word «interface».

The interaction between an interface and a class that is
implementing the interface is indicated using a dotted arrow. The
implementing class touches the tail end of the arrow and the
interface touches the head of the arrow. The conventional way to
draw interfaces on your UML class diagrams is to have the arrow
pointing upward, so the interface is always on the top, and the
classes that implement them are towards the bottom.

Object-Oriented Design | 54
Object-Oriented Design | 54

There are several advantages to interfaces. Understanding what
these are will help you determine if you should use interfaces or
inheritance when designing a system.

Like abstract classes, which are classes that cannot be instantiated,
interfaces are a means in which you can achieve polymorphism. In
object-oriented languages, polymorphism is when two classes have
the same description of a behaviour, but the implementations of
that behaviour may be different. An example of this might be how
animals “speak.” A lion may roar, but a wolf howls. Both animals can
speak, but the behaviour implementation is different.

This can be demonstrated through code, as below:

public class Lion implements IAnimal {
 public void speak() {
 System.out.println("Roar!");
 }
}

public class Wolf implements IAnimal {
 public void speak() {
 System.out.println("Howl!");
 }
}

Object-Oriented Design | 55
Object-Oriented Design | 55

Interfaces can inherit from other interfaces, but interfaces should not
be extended if you are simply trying to create a larger interface.
Interface A should only inherit from interface B if the behaviours in
interface A can fully be used as a substitution for interface B.

Examine the example below to better understand this concept.

public interface IVehicleMovement {
 public void moveOnX();
 public void moveOnY();
}

In this example, a vehicle can only travel either along the x-axis or
the y-axis. But what if we want a different type of vehicle like a plane
or a submarine to be able to move along a third axis as well? In
order to avoid adding an extra behaviour to the interface, so as not
to affect vehicles who can only move along two axes, we create a
second interface that inherits from the first.

public interface IVehicleMovement3D extends
IVehicleMovement {
 public void moveOnZ();
}

Another advantage of interfaces relates back to multiple
implementation inheritance. This is because inheriting from two or
more superclasses can cause data ambiguity—if a subclass inherits
from two or more superclasses that have attributes with the same
name or behaviours with the same method signature, then it is not
possible to distinguish between them. As Java cannot tell which one
is referenced, so it does not allow for multiple inheritance to prevent
data ambiguity.

Interfaces, however, do not have this issue. In Java, a class can
implement as many interfaces as desired. This is because interfaces
are only contracts and they do not enforce a specific way to
complete these contracts, so overlapping method signatures are
not a problem. A single implementation for multiple interfaces with
overlapping contracts is acceptable. There is no ambiguity, as a
class may only have one definition of a specific method, and it is the
same implementation no matter which interface. Java avoids data
ambiguity in this way.

Object-Oriented Design | 56
Object-Oriented Design | 56

Classes can implement one or more interfaces at a time, allowing
for multiple types. Interfaces enable you to describe behaviours
without the need to implement them, which allows reuse of those
abstractions. Interfaces allow the creation of programs with reusable
and flexible code. It is important to remember, however, that you
should not generalize all behavioural contracts into interfaces.
Interfaces fulfill a specific need: to provide for a way for related
classes to work with consistency.

Now that you have an introduction to design principles and their
manifestation in technical diagrams, this course will now turn to
examining more nuanced understandings of those same design
principles.

Object-Oriented Design | 57
Object-Oriented Design | 57

MODULE 3: DESIGN PRINCIPLES

This module covers general guidelines for evaluating the structure
of software solutions. These guidelines help ensure that software is
flexible, reusable, and maintainable. It will also cover modelling
behaviours of the objects in your software using the UML state and
UML sequence diagrams.

Evaluating Design Complexity

It is important to keep modules simple when you are programming.
If your design complexity exceeds what developers can mentally
handle, then bugs will occur more often. To help control this, there
must be a way of evaluating your design complexity.

Design complexity applies to both classes and the methods within
them. This lesson will use the term module to refer to program units
containing classes and the methods within them.

Upon completion of this module, you will be able to:

(a) Understand the general guidelines for evaluating the

structure of your software solution so that it’s flexible,
reusable, and maintainable. These guidelines are:

a. evaluating design complexity with coupling
and cohesion

b. the separation of concerns
c. information hiding
d. conceptual integrity
e. generalization principles

(b) Model behaviours of the objects in your software using
the specialized UML state and UML sequence
diagrams.

(c) Explain the importance of model checking.

Object-Oriented Design | 58
Object-Oriented Design | 58

A system is a combination of various modules. If the system has a
bad design, then modules can only connect to other specific
modules and nothing else. A good design allows any modules to
connect together without much trouble. In other words, in a good
design, modules are compatible with one another and can therefore
be easily connected and re-used.

The metrics often used to evaluate design complexity are coupling
and cohesion.

Coupling

Coupling focuses on complexity between a module and other
modules. Coupling can be balanced between two extremes: tight
coupling and loose coupling. If a module is too reliant on other
modules, then it is “tightly coupled” to others. This is a bad design.
However, if a module finds it easy to connect to other modules
through well-defined interfaces, it is “loosely coupled” to others.
This is good design.

In order to evaluate the coupling of a module, the metrics to
consider are: degree, ease, and flexibility.

Degree is the number of connections between the module and
others. The degree should be small for coupling. For example, a
module should connect to others through only a few parameters or
narrow interfaces. This would be a small degree, and coupling
would be loose.

Ease is how obvious are the connections between the module and
others. Connections should be easy to make without needing to
understand the implementations of other modules, for coupling
purposes.

Flexibility indicates how interchangeable the other modules are for
this module. Other modules should be easily replaceable for
something better in the future, for coupling purposes.

Object-Oriented Design | 59
Object-Oriented Design | 59

Signs that a system is tightly coupled and has a bad design are:

• a module connects to other modules through a great
number of parameters or interfaces

• corresponding modules to a module are difficult to find

• a module can only be connected to specific other modules
and cannot be interchanged

Cohesion

Cohesion focuses on complexity within a module, and represents
the clarity of the responsibilities of a module. Like complexity,
cohesion can work between two extremes: high cohesion and low
cohesion.

A module that performs one task and nothing else, or that has a
clear purpose, has high cohesion. A good design has high
cohesion. On the other hand, if a module encapsulates more than
one purpose, if an encapsulation has to be broken to understand a
method, or if the module has an unclear purpose, it has low
cohesion. A bad design has low cohesion. If a module has more
than one responsibility, it is a good idea to split the module.

It is important to balance between low coupling and high cohesion
in system design. Both are necessary for a good design. However, in
complex systems, complexity can be distributed between the
modules or within the modules. For example, as modules are
simplified to achieve high cohesion, they may need to depend more
on other modules, thus increasing coupling. On the other hand, as
connections between modules are simplified to achieve low
coupling, the modules may need to take on more responsibilities,
thus lowering cohesion.

Separation of Concerns

One of the design principles examined in the previous module was
that of decomposition. Decomposition divides a whole into different
parts. To understand why decomposition is necessary in design, the
principle of separation of concerns must be examined.

Object-Oriented Design | 60
Object-Oriented Design | 60

A concern is a very general notion: it is anything that matters in
providing a solution to a problem. Separation of concerns is about
keeping the different concerns in your design separate. When
software is designed, different concerns should be addressed in
different portions of the software.

Consider a software system that solves a problem. That problem
could either be simple, with a small number of subproblems, or
complex, with a large number of subproblems. Concepts can be
abstracted from the problem space. When these abstractions are
implemented in the software, it can lead to more concerns. For
example, some of these concerns might involve what information
the implementation represents, what it manipulates, and what gets
presented at the end. In order not to become lost in the resulting
concerns and subproblems, the design must be organized so all
concerns are carefully considered and addressed. To do this,
different subproblems and concerns are separated into different
sections during design and construction of the software system. This
applies the principle of separation of concerns.

Separation of concerns provides many advantages. They allow you
to develop and update sections of the software independently.
Using separation of concerns also means that you do not need to
know how all sections of code work in order to update a section.
Finally, separation of concerns allows changes to be made to one
component without requiring a change in another.

Separation of concerns is a key idea that underlies object-oriented
modelling and programming. When addressing concerns
separately, more cohesive classes are created and the design
principles of abstraction, encapsulation, decomposition, and
generalization are enforced:

• Abstraction occurs as each concept in the problem space is
separated with its own relevant attributes and behaviours.

• Encapsulation occurs as the attributes and behaviours are

gathered together into their own section of code called a
class. Access to the class from the rest of the system and its
implementation are separated, so details of implementation
can change while the view through an interface can stay the
same.

Object-Oriented Design | 61
Object-Oriented Design | 61

• Decomposition occurs as a whole class can be separated
into multiple classes.

• Generalization occurs as commonalities are recognized, and
subsequently separated and generalized into a superclass.

Separation of concerns is an ongoing process throughout the
system design process. Because of the relationship of the
separation of concerns with design principles, using this concept in
software design creates a system that is easier to maintain because
each class is organized so that the class only contains the code that
it needs to do its job. Modularity is increased in turn, which allows
developers to reuse and build up individual classes without
affecting others.

It is important to note that the boundaries of each class will not
always be obvious in practice. Deciding how to abstract,
encapsulate, decompose, and generalize to address the many
concerns for a given problem is at the core of designing modular
software.

Separation of Concerns Example

This example will illustrate separation of concerns. Consider a
smartphone. Smartphones are capable of many behaviours: taking
photos, scheduling meetings, sending and receiving email,
browsing the Internet, sending texts, and making phone calls. This
example will only focus on two functions, for the sake of simplicity:
the use of a camera and traditional phone functions.

public class SmartPhone {
 private byte camera;
 private byte phone;

 public SmartPhone() { … }

 public void takePhoto() { … }
 public void savePhoto() { … }
 public void cameraFlash() { … }
 public void makePhoneCall() { … }
 public void encryptOutgoingSound() { … }
 public void decipherIncomingSound() { … }
}

Object-Oriented Design | 62
Object-Oriented Design | 62

This code has a SmartPhone class with attributes called camera and
phone, and associated behaviours. This system has low cohesion, as
there are behaviours that are not related to each other. The camera
behaviours do not need to be encapsulated with the behaviours of
the phone in order for the camera to do its job. The components
also do not offer modularity. For example, it is not possible to
access the camera or the phone separately if another system is built
that requires only one or the other. The camera also would not be
able to be replaced with a different camera, or even a different
object, without removing the code for the camera completely from
this class.

The SmartPhone class needs to be more cohesive, and each
component of the smartphone should have distinctive functionality.
Using the separation of concerns, we can identify that the
SmartPhone class has two concerns:

1. To act as a traditional telephone.
2. To take pictures using the built-in camera.

With the concerns identified, it is possible to separate them into
their own more cohesive classes and encapsulate all the details
about each concern into functionally distinct and independent
classes.

The SmartPhone class will reference instances of the new classes so
that the smartphone can act as a coordinator of the camera and the
phone. This will let our smartphone provide access to all the
behaviours of the camera and the phone, without having to know
how each component behaves.

Using a UML Class diagram, this is how the new design for the
SmartPhone system might look:

Object-Oriented Design | 63
Object-Oriented Design | 63

The attributes and behaviours for the phone and camera have been
separated into two distinct interfaces. These are each implemented
with a corresponding class.

The code would translate as below:

public interface ICamera {
 public void takePhoto();
 public void savePhoto();
 public void cameraFlash();
}

public interface IPhone {
 public void makePhoneCall();
 public void encryptOutgoingSound();
 public void deciphereIncomingSound();
}

public class FirstGenCamera implements ICamera {
 /* Abstracted camera attributes */

public class TraditionalPhone implements IPhone {
 /* Abstracted phone attributes */
}

Object-Oriented Design | 64
Object-Oriented Design | 64

The code for the SmartPhone class will also need to be redesigned
so that it refers to the two separate classes:

public class SmartPhone {
 private ICamera myCamera;
 private IPhone myPhone;

 public SmartPhone(ICamera aCamera, IPhone
aPhone) {
 this.myCamera = aCamera;
 this.myPhone = aPhone;

}

public void useCamera() {
 return this.myCamera.takePhoto();

}

public void usePhone() {
 return this.myPhone.makePhoneCall();

}
}

With this redesign, the SmartPhone class provides the functions of
both the camera and the phone. However, the camera and phone
classes are separated out, so their functionalities are hidden from
each other, but they are still aggregated under the SmartPhone
class. There is also a SmartPhone constructor with a camera and a
phone as parameters. It is possible to create a new instance of the
SmartPhone class by passing in instances of classes that
implemented the ICamera and IPhone interfaces. Who creates the
appropriate phone and camera objects is left as a separate
responsibility, as the SmartPhone class does not actually need to
know this. Finally, the SmartPhone class has methods that forward
the responsibilities of using the camera and phone to these objects.

This creates a modular design: if the design later calls for the
camera or phone classes to be swapped for something else, then
the SmartPhone class’s code does not need to be touched. The
code is simply changed to instantiate the SmartPhone and its parts.

The SmartPhone class is now more cohesive but has increased
coupling as the SmartPhone class needs to know about the Camera
and Phone interfaces and is indirectly dependent on other classes.

Object-Oriented Design | 65
Object-Oriented Design | 65

In this example, separation of concerns was used by:

• Separating out the notions of camera and phone through
generalization and defining the two interfaces.

• Separating out the functionality for a first-generation camera
and traditional phone by applying abstraction and
encapsulation, and defining two implementing classes.

• Applying decomposition to the smartphone so the
constituent parts are separated from the whole.

Information Hiding

A well-designed system is well organized, achieved through the
help of a number of design principles. This lesson will further
investigate the concept of information access. Not every component
of a software system needs to know about everything else. Modules
should only have access to the information it needs to do its job.
Limiting information to modules so that only the minimum amount
of information is needed to use them correctly and to “hide”
everything else is done through information hiding.

Information hiding is commonly associated with sensitive data —the
more sensitive the data, the more likely it should have limited
access. In software design, information hiding is also specifically
used to hide changeable details, such as algorithms or data
representations. Assumptions, on the other hand, are not hidden
and are typically expressed in APIs and interfaces.

Information hiding allows developers to work on modules
separately, without needing other developers to know the
implementation details of the module they are working on. The
module is instead used through its interface.

A good rule of thumb is therefore things that might change, like
implementation details, should be hidden, and things that do not
change, like assumptions, are revealed through interfaces.

Object-Oriented Design | 66
Object-Oriented Design | 66

Information hiding is closely associated with encapsulation.
Encapsulation bundles attributes and behaviours into their
appropriate class, but it also deals with providing access to modules
through interfaces and restricting access to certain behaviours or
functions. Since through encapsulation, the implementation of
behaviours is hidden behind an interface, which is the only way to
access specific methods, other classes rely on information in these
method signatures, and not the underlying implementations.
Information hiding through encapsulation allows the
implementation to change without changing the expected
outcome. The expectations for a behaviour can be fulfilled without
exposing how it is accomplished.

In addition to hiding implementation or behaviours, it is possible to
hide attributes. This prevents critical information of a class from
being changed directly. For example, if an attribute is critical to all
the behaviours of a class, then we do not want any external classes
changing it directly.

Information hiding can be accomplished through the use of access
modifiers. Access modifiers change which classes are able to
access attributes and behaviours. They also determine which
attributes and behaviours a superclass will share with its subclasses.
The four levels of access in Java are:

• Public
• Protected
• Default
• Private

Let us examine each of these in turn.

Public

Attributes with a public access modifier are accessible by any class
in your system. This means that other classes can retrieve and
modify the attribute or change. Methods can also be given a public
level of access, so any class in the system can access the method.
However, this access does not allow other classes to change the
implementation of the behaviour for the method. A publicly

Object-Oriented Design | 67
Object-Oriented Design | 67

accessible method simply allows other classes to call the method or
invoke the behaviour and receive any output from it. However,
implementation remains hidden through encapsulation.

Protected

Attributes and methods that are protected are not accessible to
every class in the system. Instead, they are only available to the
encapsulated class itself, all subclasses, and classes within the same
package. Packages are the means by which Java organizes related
classes into a single namespace.

Default

A default access modifier only allows access to attributes and
methods to subclasses or classes that are part of the same package
or encapsulation. This access modifier is also known as the no
modifier access because it does not need to be explicitly declared
in the code.

Private

Attributes and methods that are private are not accessible by any
other class other than by the encapsulating class itself. This means
these attributes cannot be accessed directly and these methods
cannot be invoked by any other classes.

The following example in code shows how access modifiers can be
indicated:

public class Person {
 String name;
}

In this example, the access modifier public has been used for the
Person class, and the name member variable has default access as
no modifier is indicated. Access modifiers protected or private
could also be used for the name to apply different access.

Object-Oriented Design | 68
Object-Oriented Design | 68

Conceptual Integrity

Conceptual integrity is a concept related to creating consistent
software. Conceptual integrity entails making decisions about the
design and implementation of a software system, so even if multiple
people work on it, it would seem cohesive and consistent as if only
one mind was guiding the work. This is generally achieved through
agreement to use certain design principles and conventions for
creating the system.

It is important that the concept of conceptual integrity not be
mistaken for ignoring the opinion of members of the development
team about the software. These thoughts are still important and
should be discussed openly. However, any ideas should abide by
the agreed upon principles and conventions.

There are multiple ways to achieve conceptual integrity. These
include:

• communication
• code reviews
• using certain design principles and programming constructs
• having a well-defined design or architecture underlying the

software
• unifying concepts
• having a small core group that accepts each commit to the

code base.

Effective communication maintains conceptual integrity and allows
team members to discuss and agree to use certain libraries or
methods when addressing certain issues. This in turn helps create
more consistent code. Some good practices to foster
communication include agile development practices like daily
stand-up meetings and sprint retrospectives.

Instructor’s Note:
 To learn more about stand-up meetings and sprint
retrospectives, see the course on reviews and metrics for
software improvements in the Coursera
 Software Product Management Specialization!

Object-Oriented Design | 69
Object-Oriented Design | 69

Code reviews are systematic examinations of written code. These
are similar to peer review in academic writing. Developers go
through code line by line and uncover issues in each other’s code.
This helps identify mistakes in the software, but it also helps create
consistency among different developers’ code.

Using certain design principles and programming constructs helps
maintain conceptual integrity. Notably, Java interfaces are a
construct that can accomplish this. An interface defines a type with a
set of expected behaviors. Implementing classes of that interface
will have these behaviors in common. This creates consistency in the
software, and increases conceptual integrity. Later in this
specialization, we will also cover design patterns, which provide
conventional structures for classes to solve design issues. These
design patterns also provide conceptual integrity.

Having well-defined design or architecture underlying software
helps create conceptual integrity. While software design is typically
associated with guiding the internal design of software running as a
single process, software architecture describes how software
running as multiple processes work together and how they relate to
each other. This helps create consistency.

Unifying concepts in your software also increases conceptual
integrity. This involves taking different concepts and finding a
commonality, so that each concept can be seen and treated in
similar ways. For example, in the Unix operating systems, every
resource can be seen and manipulated as if it were a file. The same
set of operations can then be used on different types of resource,
simplifying the system so that any resource can be treated the same
way, which avoids special cases. This helps create consistency.

Another means of increasing conceptual integrity is having a small
core group that accepts each commit to the code base. This is
similar to exercising code reviews, but it restricts the review to only
core members of the software team. These members are
responsible for ensuring that any software changes follow the
overall architecture and design of the software. By having only an
individual or small group in charge of this helps solve design issues
and creates consistency.

Object-Oriented Design | 70
Object-Oriented Design | 70

Conceptual integrity is often considered the most important
consideration in system design.

Practicing conceptual integrity helps guide the software
development team by making the design and logic of the software
consistent and easy to follow for any team member. This helps team
members know how and where to change software to meet any new
requirements, which makes the software easier to maintain.
Conceptual integrity can serve as structure and framework for any
software project by preventing informal and unguided code, which
could lead to confused and unorganized work.

Generalization Principles

The previous module in this course reviewed the four design
principles of abstraction, encapsulation, decomposition, and
generalization. These principles help guide the choices that must be
made when designing an object-oriented system.

However, some design decisions are easier to make than others.
Generalization and inheritance are some of the more difficult topics
to master in object-oriented programming and modelling.

Inheritance is a powerful design tool that can help create clean,
reusable, and maintainable software systems. However, its misuse
can lead to poor code. If design principles are used improperly,
they may create more problems than they solve.

DID YOU KNOW?

The well-known computer architect, Fred Brooks discusses conceptual
integrity in his book The Mythical Man-Month. In this book, he states,

It is better to have a system omit certain anomalous
features and improvements, but to reflect one set of
design ideas, than to have one that contains many
good but independent and uncoordinated ideas.”

Object-Oriented Design | 71
Object-Oriented Design | 71

In order to identify if inheritance is being misused, it is good
practice to keep a couple of generalization principles in mind.

One principle can be formulated as a question to ask yourself about
whether a subclass should exist: “Am I using inheritance to simply
share attributes or behaviour without further adding anything
special in my subclasses?” If the answer to this question is “yes,”
then inheritance is being misused, as there is no point for the
subclasses to exist. The superclass should already be enough.

For example, an employee is a general type for managers,
salespeople, and cashiers, but each of those subtypes of employee
perform specific functions. Inheritance makes sense in this case.
However, if you are creating different kinds of pizza, there is no true
specialization between different kinds of pizza, so subclasses are
unnecessary.

Another technique is determining if the Liskov substitution
principle is broken. The Liskov substitution principle states that a
subclass can replace a superclass, if and only if, the subclass does
not change the functionality of the superclass. This means that if a
subclass replaces a superclass, but replaces all the superclass
behaviours with something totally different, then inheritance is
being misused.

For example, if a Whale class which exhibits swimming behaviour is
substituted for an Animal class, then functions such as running and
walking will be overridden. The Whale no longer behaves in the way
we would expect its superclass to behave, violating the Liskov
substitution principle.

In Java, there is a library with a Stack class, which is an example of
bad inheritance. A stack is understood as first-in-last-out data
structure, with a small number of well-defined behaviours like peek,
pop, and push. But, the Java Stack class inherits from a Vector
superclass. This means that the Stack class is able to return an
element at a specified index, retrieve the index of an element, and
even insert an element into a specific index. These are not
behaviours normally expected from a stack.

Object-Oriented Design | 72
Object-Oriented Design | 72

In cases where inheritance is not appropriate, decomposition may
be the solution. For example, a smartphone is better suited for
decomposition than inheritance. Recall our example from the
section on separation of concerns, where a smartphone might have
the two functions of a traditional phone and as a camera.

In this example, it does not make sense to use inheritance from a
traditional phone to a smartphone, and then to add camera
methods to smartphone subclass.

Instead, decomposition helps extract the camera’s responsibilities
into their own class. This allows the SmartPhone class to provide the
responsibilities of the camera and the phone through separate
classes. The SmartPhone class does not need to know how these
classes work.

Object-Oriented Design | 73
Object-Oriented Design | 73

Although inheritance is a powerful principle, it is important to know
when to properly use a technique, or risk introducing more
problems to a software system.

Specialized UML class diagrams

We have already reviewed the use of UML class diagrams to express
technical design. However, many different kinds of UML class
diagrams exist. Below, the following section explores two
specialized versions of class diagrams, and how they can be used to
enhance your technical design.

UML Sequence Diagrams

UML sequence diagrams are another important technique in
software design. They are a type of UML diagram, commonly used
as a planning tool before the development team starts
programming. Sequence diagrams are used to show a design team
how objects in a program interact with each other to complete
tasks. In simple terms, a sequence diagram is like a map of
conversations between different people, with the messages sent
from person to person outlined.

Object-Oriented Design | 74
Object-Oriented Design | 74

Sequence diagrams can help you visualize the classes you will
create in your software and determine the functions that will need to
be written. It may also illustrate problems in your system that were
previously unknown.

Let us examine each component of a sequence diagram.

• Boxes are used to represent a role played by an object. The
role is typically named after the class for the object.

• “Lifelines,” which are vertical dotted lines, are used in the
diagram to indicate an object as time goes by.

• Solid line arrows are used to show messages that are sent
from one object to another, or a sender to a receiver.
Receivers are at the pointed end of an arrow. A short
description of the message is usually included above the
arrow.

• Dotted line arrows are used to show a return of data and
control back to initiating objects. A short description of the
return of data or control is usually included above the arrow.

• Small rectangles along an object’s lifeline denote a method
activation. You activate an object whenever an object sends,
receives, or is waiting for a message.

• People, or actors, may also be included in sequence
diagrams if they use or interact with objects. Actors are
typically represented with stick figures.

Lifeline

Role

Activation

Object-Oriented Design | 75
Object-Oriented Design | 75

Sequence diagrams are typically framed within a large box. Titles for
the diagram are indicated in top, left corners. It is good practice to
provide a meaningful title, as the diagram will be referenced for
development. Another good practice is to draw objects from left to
right in the sequence as they interact with each other.

Below is an example of a sequence diagram for changing the
channel of your television using a remote control, with all of the
elements described above.

A sequence diagram can contain other sequence diagrams within
them. For example, if you are creating a sequence diagram for an
ATM machine, there might be a different sequence for withdrawals
and deposits; and during a single process someone might want to
both withdraw and deposit money. In your sequence diagram, you
would have one big sequence of activities, with two smaller
sequences inside them.

As you design software, your sequence diagrams may get much
more complicated. Loops and alternative processes can also be
demonstrated in a sequence diagram. An alternative process is a
sequence of actions that will occur if a condition is true. An
alternative sequence can be placed in a box and labelled “alt” for
alternative in the top right corner.

Object-Oriented Design | 76
Object-Oriented Design | 76

Let us build on the previous example to illustrate this. Imagine a
scenario where the TV viewer is unsure what channel to go to and
would like to surf channels until they pick one they like. This
scenario can be illustrated under the previous sequence with the
condition “[else].” This indicates that this scenario occurs only if all
the other alternatives are false.

This scenario also contains a loop. This can be illustrated through
adding a box labelled “loop.” Under the label, the conditional
statement for the loop should be written. If that statement is true,
then the system will go through the loop. In this example, the loop
sequence should continually occur if the TV viewer is unhappy with
the channel they are watching.

Inside the loop, the TV viewer presses the up or down arrow on the
remote to change channels. This sends a message to the remote.
The remote then sends a message to the TV with this action. The TV
changes the channel and displays that to the viewer. The final
sequence will look as below:

Sequence diagrams are a useful technique to help create clean,
well- designed programs.

Object-Oriented Design | 77
Object-Oriented Design | 77

UML State Diagrams

UML state diagrams are another kind of UML diagram. They are a
technique used to describe how systems behave and respond. They
follow the states of a system or a single object and show changes
between the states as a series of events occur in the system.

A state diagram illustrates object behaviour by depicting the
changing states of an object. These change in response to different
events. A state is the way an object exists at a particular point in
time. The state of an object is determined by the values of its
attributes.

A good metaphor for states is that of a car. A car with an automatic
transmission might have different states: park, reverse, neutral, and
drive. If a car is in reverse, it can only behave by moving backwards.
If you want to move forward, you need to change the state of the car
to drive. This is similar to states of objects in a software system.
When an object is in a certain state, it behaves in a specific way or
has attributes set to specific values. Let us examine the different
elements of state diagrams:

• A filled circle indicates the starting state of the object. Every
state diagram begins with a filled circle.

• Rounded rectangles indicate other states. These rectangles

have three sections: a state name, state variables, and
activities.

o State names should be short, meaningful titles for the
state of the object. Each state should have at least a
state name.

Object-Oriented Design | 78
Object-Oriented Design | 78

o State variables are data relevant to the state of the
object.

o Activities are actions that are performed when in a
certain state. There are three types of activities

present for each state: Entry, Exit, and Do activities.
Entry activities are actions that occur when the state
is just entered from another state. Exit activities are
actions that occur when the state is exited and moves
on to another state. Do activities are actions that
occur while the object is in a certain state.

• Arrows indicate transitions from one state to another.
Transitions are typically triggered by an event. This event is
generally described above the arrow.

Each transition arrow will always have an event, and it may
even have a guard condition and an action. The transition
and action happens from a given state if the event occurs
and the condition is true.

• A circle with a filled circle inside indicates termination.
Termination represents an object being destroyed or the
process being completed. Not all diagrams have a
termination—some may run continuously.

State diagrams can be useful to help determine the events that
might occur during an object’s lifetime, such as different user inputs,
and how that object should behave when these events occur, like
checking conditions and performing actions. Sometimes it may be
easier to see changes in state in a diagram, rather than reading
through source code.

Object-Oriented Design | 79
Object-Oriented Design | 79

State diagrams can also help identify issues in a software system,
such as discovering a condition that was unplanned for. They can
also help create tests—knowing the different states of a system can
help ensure that tests are complete and correct.

Model Checking

In addition to understanding techniques for designing a software
system, it is important to know techniques for verifying the system.
Some of these techniques include unit testing, beta testing, and
simulations. Another one such technique is model checking, which
is a systematic check of your system’s state model in all its possible
states. Model checking helps find errors that other tests cannot.

In model checking, you check all the various states of the software
to try and identify any errors, by simulating different events that
would change the states and variables of the software. This will help
expose any flaws by notifying you of any violation of the rules that
occur in the behaviour of the state model. Typically, model checks
are performed by model checking software. There are different
types of software available for such tests, some of which are free
and available for developers using different languages. Model
checking is typically performed during testing of the software.

Imagine software that has a rule not to produce a deadlock.
Deadlock is a situation where the system cannot continue because
two tasks are waiting for the same resource. The model checker
would simulate the different states that could occur in your system,
and if a deadlock was possible, it would provide details of this
violation.

Let us go through the process for model checking software.

Model checkers begin by generating a state model from your code.
A state model is an abstract state machine that can be in one of
various states. The model checker then checks that the state model
conforms to be certain behavioural properties. For example, the
model checker can examine the state model for flaws like race
conditions, exploring all the possible states of your model.

Object-Oriented Design | 80
Object-Oriented Design | 80

There are three different phases in model checking.

The first is the modelling phase. During this phase, the model
description is entered in the same programming languages as the
system. Any desired properties are also described. This phase also
performs sanity checks. Sanity checks are quick checks that should
be easy to do, as they come from clear and simple logic. It is
beneficial to test for these simple errors before using model
checkers, so the focus can be on specifying the more complex
properties to check. Sanity checks might include something as
simple as turning the system on and off.

The second phase is the running phase. The running phase is when
the model checker is run to see how the model conforms to the
desired properties described in the modelling phase.

The third and final phase is the analysis phase. This phase is when
all desired properties are checked to be satisfied, and if there are
any violations. Violations are called counterexamples. The model
checker should provide descriptions of violations in the system, so
you can analyze how they occurred.

Information provided by the model checker allows you to revise
your software and fix any problems. Once problems are fixed, it is
good practice to run the model checker again. Repeat this process
until you are sure the software is correct with respect to the desired
properties.

Model checking helps ensure not only that software is well
designed, but also that software meets desired properties and
behaviour, and it works as intended.

Object-Oriented Design | 81
Object-Oriented Design | 81

COURSE RESOURCES

Course References

• Baier, C., & Katoen, J. P. (2007). Principles of model
checking. Cambridge, MA; Massachusetts Institute of
Technology. Retrieved from
http://is.ifmo.ru/books/_principles_of_model_checking.pdf

• Bell, D. (2004, February 16). UML basics: The sequence
diagram. IBM: developerWorks. Retrieved from
http://www.ibm.com/developerworks/rational/library/3101.h
tml

• Clarke, E. M. (n.d.). The birth of model checking. Retrieved

from https://www7.in.tum.de/um/25/pdf/Clarke.pdf

• Cvijanovic, D. (n.d.). Model checking. Retrieved from
http://www0.cs.ucl.ac.uk/staff/ucacwxe/lectures/3C05-02-
03/aswe17-essay.pdf

• Katoen, J. P. (2013, October 14). Introduction to model

checking: Lecture #1: motivation, background, and course
organization [Powerpoint presentation]. Retrieved from
https://moves.rwth-aachen.de/wp-
content/uploads/SS16/mc/lec1.pdf

• Nadig, D. (2011, October 29). The importance of conceptual

integrity [Blog post]. Retrieved from
http://architecture.typepad.com/architecture_blog/2011/10/
the-importance-of-conceptual-integrity.html

• Palshikar, G. K. (2004, February 12). An introduction to

model checking. Retrieved from
http://www.embedded.com/design/prototyping-and-
development/4024929/An-introduction-to-model-checking

Object-Oriented Design | 82
Object-Oriented Design | 82

• Sironi, G. (2012, July 25). Lean tools: Conceptual integrity.
Retrieved from https://dzone.com/articles/lean-tools-
conceptual-0

• Trace Modeler. (2012). A quick introduction to UML

sequence diagrams. Retrieved from
http://www.tracemodeler.com/articles/a_quick_introduction
_to_uml_sequence_diagrams/

Object-Oriented Design | 83
Object-Oriented Design | 83

Glossary

Word Definition

“Don’t Repeat
Yourself” rule
(D.R.Y. rule)

A rule related to the design principle of
generalization. D.R.Y. suggests that we should write
programs that are capable of performing the same
tasks but with less code. Code should be reused
because different classes or methods can share the
same blocks of code. D.R.Y. helps make systems
easier to maintain.

Abstract A keyword used in Java to indicated that a class
cannot be instantiated.

Abstract classes Classes that cannot be instantiated.

Abstract data
type

A data type that is defined by the programmer and
not built into the language. It is a grouping of related
information that is denoted with a type that allows
data to be organized in a meaningful way.

Abstraction A design principle that suggests that a concept in the
problem domain should be simplified down to its
essentials within some context.

Abstraction
barrier

A barrier achieved through encapsulation, which
allows the internal workings of a class to be hidden
from the outside world when it is not relevant. It
reduces complexity for users of a class.

Access modifiers Change that classes are able to access attributes and
behaviours.

Activities Actions that are performed when in a certain state.

Aggregation A type of relationship of the design principle of
aggregation. Aggregation indicates a “has-a”
relationship, where a whole has parts that belong to it.
Parts might be shared among wholes in this
relationship.

Algol 68 A programming language from the 1970s that
supports the notion of an abstract data type.

Analysis Phase A phase in model checking, where you check if all the
desired properties are satisfied, and if any are
violated.

Object-Oriented Design | 84
Object-Oriented Design | 84

Association A type of relationship of the design principle of
decomposition. Association indicates that there is a
loose relationship between two objects. This means
that objects may interact with each over for a time.

Attributes The characteristics of an object. Basic attributes are
ones that do not disappear over time, although their
values may change.

Behaviours The responsibilities that an abstraction does for its
purpose.

Black box A kind of thinking associated with encapsulation. In
black box thinking, a class acts like a “black box” that
you cannot see inside for details about how attributes
are represented or how methods compute their result.
What happens in the box does not matter to achieving
expected behaviours. When a method is called, inputs
and outputs may be obtained, even if the inner
workings of the box are hidden.

Boolean value A value that is either true or false.

Boundary objects A type of object, usually introduced in the solution
space of a software problem that connect to services
outside of the system.

C A programming language from the mid-1970s, that
provided a means to organize problems and allowed
developers to create multiple, but unique, copies of
their abstract data types more easily.

Class An abstract concept that unifies a component
together. For example, a component might be a dog.
The dog would be part of a dog class.

Class name The name provided to a class of objects in design.

Class,
responsibility,
collaborator
(CRC) cards

A visual technique for recording, organizing, and
refining components in software design at a high level
during conceptual design. CRC uses small cards
indicating class, responsibilities, and collaborations of
components in software.

COBOL A popular programming language from the 1960s,
that follows an imperative paradigm.

Code reviews Systematic examinations of written code, similar to
peer review in writing.

Object-Oriented Design | 85
Object-Oriented Design | 85

Cohesion Design complexity that occurs within a module. It
represents the clarity of the responsibilities of a
module.

Collaborators Components that work or interact with another
identified component in software design, in order to
fulfill its responsibilities.

Components Components correspond to objects or concepts of a
software that must work together for the software to
work.

Composition A type of relationship of the design principle of
decomposition. Composition is an exclusive
containment of parts, otherwise known as a strong
has-a relationship. In a composition relationship, a
whole cannot exist without its parts, and if a whole is
destroyed, then the parts are destroyed too.

Concept Concepts may include instances of people, places, or
things, often grouped as a distinct object in software
design.

Conceptual
design

The stage of software design, where broad-level
concepts are planned out, often with the help of
conceptual mock-ups. The conceptual design helps
establish what the major components, connections,
and associated responsibilities are for the software
solution.

Conceptual
integrity

The concept of creating consistent software.
Conceptual integrity requires making decisions about
how a system will be designed and implemented so it
seems as if only a single mind guided all the work.

Conceptual
mock-ups

Provide a visual expression of initial thoughts for how
requirements will be satisfied in a software product.

Concern A very general notion. Could include anything that
matters in providing a solution to a problem.

Connections Connections indicate how different components of a
software design relate to each other.

Context The background or framework surrounding a
problem. For example, the problem of creating an
app could be within a gaming context.

Object-Oriented Design | 86
Object-Oriented Design | 86

Control objects A type of object, usually introduced in the solution
space of a software problem, that receives events and
coordinates actions.

Counterexamples A violation of a desired property, as discovered
during the analysis phase of model checking.

Coupling Design complexity that occurs between a module and
other modules.

Data The attribute values of an object.

Data ambiguity When inheritance occurs from two or more
superclasses, and the inherited attributes inherited
have the same name or the inherited behaviours have
the same method signatures, and it is impossible to
tell between them.

Data integrity The assurance that the attribute values of an object
have been changed in an appropriate manner by an
approved party.

Deadlock A situation when the system cannot continue because
two tasks are waiting for the same resource.

Decomposition A major design principle of object-oriented modelling
and programming. It takes a whole thing and divides
it up into different parts. It could also take separate
parts with different functionalities, and combine them
together to form a whole.

Default An access modifier and level in Java. Also known as
the no modifier access, as it does not need to be
explicitly declared. Attributes and methods with no
modifier will only allow access to subclasses and to
the encapsulating class.

Degree The number of connections between a module and
other modules in a system.

Design The activity of planning out a software solution,
including evaluating different alternatives.

Design patterns A reusable solution to a problem identified in software
design.

Do activities Actions that occur once, or multiple times while the
object is in a certain state.

Object-Oriented Design | 87
Object-Oriented Design | 87

Ease How obvious the connections are between a module
and other modules in a system.

Encapsulation A fundamental design principle in object-oriented
modelling and programming. Encapsulation involves
three ideas. It bundles attribute values and behaviours
that manipulate those values into a self-contained
object. It also exposes certain data and functions of
the object to other objects, or alternately restricts
access to certain data and function to only within that
object.

Entity object A type of object, often identified in the problem
space, that represent items used in the application.

Entry activities Actions that occur when the state is just entered from
another state.

Exit activities Actions that occur when the state is exited and moves
on to another state.

Explicit
constructor

A constructor in Java that indicated that values can be
assigned to attributes during instantiation.

Extends A keyword in Java that indicated inheritance.

Flexible Software flexibility refers to the ability for the solution
to adapt to possible or future changes in its
requirements

Flexibility Indicates how interchangeable other modules are for
a specific module. The more replaceable, the better
the design.

Fortran A popular programming language from the 1960s,
that follows an imperative paradigm.

Functions The behaviours that manipulate attribute values within
an object.

General idea A class or broad term used to describe a large
grouping of more distinct classes.

Generalization A design principle that helps reduce the amount of
redundancy when solving problems, by taking
repeated, common, or shared characteristics between
two or more classes, and factoring them out into
another class, so that code can be reused and
characteristics can be inherited by subclasses.

Object-Oriented Design | 88
Object-Oriented Design | 88

Global data Data that is located all in one place in the computer’s
memory for a program.

Header file A separate file in C, that declares what can be
accessed in other files. In C, each file contains all
associated data and functions that manipulate that
data.

High cohesion Occurs if a module performs one task and nothing
else, or if it has a clear purpose. This is considered a
characteristic of good design.

Imperative
paradigm

A paradigm that broke up large programs into smaller
programs, called subroutines. This paradigm made
use of global data.

Implementation The process of putting a method or event into effect.

Implements A keyword in Java that indicates a declaration that the
contract is going to be fulfilled as described in the
interface.

Implementation
inheritance

A kind of inheritance that suggests that a superclass
can have multiple subclasses, but that a subclass can
only inherit from one superclass. This kind of single
implementation is the only one allowed in Java.

Implicit
constructor

A constructor in Java that occurs when a constructor
has not been written. All attributes are assigned zero
or null when using the default constructor.

Information
hiding

Allows modules in a system to give others the
minimum amount of information needed to use them
correctly and “hide” everything else. This allows
modules to be worked on separately.

Inheritance According to the principle of generalization,
repeated, common, or shared characteristics between
two or more classes are taken and factored into
another class. Subclasses can then inherit the
attributes and behaviours of this generalized or parent
class.

Instantiated The creation of an instance of an object.

Object-Oriented Design | 89
Object-Oriented Design | 89

Interface The point where two objects meet and interact.
Interfaces are created through encapsulation, when
certain methods are exposed and made accessible to
objects of other classes. Interfaces are not classes, but
are used to describe behaviours.

Can also indicate a keyword in Java, that indicates an
interface is being created.

Interface
inheritance

Interfaces cannot be instantiated, but can be used as
reference type for the object of an implementing
class, and can be extended by another interface. This
is known as interface inheritance.

Liskov
substitution
principle

A principle that states that a subclass can replace a
superclass, if and only if the subclass does not change
the functionality of the superclass.

Local variables An idea where subroutines or procedures could
contain nested procedures, allowing each to have
their own variables.

Loosely coupled Occurs if a module finds it easy to connect to other
modules. Considered a characteristic of good design.

Low cohesion Occurs if a module tries to encapsulate more than one
purpose, or if it has an unclear purpose. This
characteristic is considered bad design.

Maintainable Maintainability refers to the ease of modifying a
software system or component in order to correct or
improve faults, performance, or other attributes, or
the ability to adapt to a changed environment.

Methods Methods manipulate the attribute values or data in an
object of a class, in order to achieve the actual
behaviours.

Model checking A systematic check of a system’s state model in all its
possible states.

Modelling Phase A phase in model checking, where the model
description is entered, sanity checks are performed,
and desired properties are described. This would be
provided in whatever programming language your
system uses.

Models A visual representation of a software design.

Object-Oriented Design | 90
Object-Oriented Design | 90

Modula-2 A programming language from the mid-1970s that
provided a means to organize problems and allowed
developers to create multiple, but unique, copies of
their abstract data types more easily.

Module A program unit that includes classes and the methods
within them.

Multiple
inheritance

A form of inheritance that occurs when a subclass has
two or more superclasses. Java doesn’t support
multiple inheritance.

Namespace A namespace is a package that classes can be
organized and represented by.

Object-oriented
analysis

A type of analysis that identifies key objects in a
conceptual design problem.

Object-oriented
design

The method revolving around perceiving concepts as
objects, which requires programmers to plan out their
code to have better software that is flexible, reusable,
and maintainable. It involves refining the details of
objects, including attributes and behaviours.

Object-oriented
modelling

Involves the practice of representing key concepts
through objects in the software.

Operations A section of UML class diagrams, where behaviours of
the abstraction are defined. This is equivalent to
methods in a Java class.

Override Occurs when a subclass can provide its own
implementation for an inherited superclass’s method.
The subclass’s methods override the superclass’s.

Package The means by which Java organizes related classes
into a single namespace.

Parts Portions or fragments with different functionalities that
can be combined together to form a whole thing.
Related to decomposition.

Pascal A programming language from the 1970s that
supports the notion of an abstract data type.

Polymorphism In object-oriented languages, polymorphism is when
two classes have the same description of a behaviour,
but the implementation of the behaviour may be
different.

Object-Oriented Design | 91
Object-Oriented Design | 91

Private An access modifier and level in Java. Private attributes
and methods are not accessible by any class other
than by the encapsulating class itself.

Programming
Paradigms

A typical pattern or example of the thought-process or
theory underlying programming languages and
coding within a specific time frame.

Properties A section of UML class diagrams where attributes of
the abstraction are defined. This is equivalent to
Java’s member variables.

Protected An access modifier and level in Java. A protected
attribute or method is one that can only be accessed
by the encapsulating class itself, all subclasses, and all
classes within the same package.

Public An access modifier and level in Java that indicates that
an attribute or method can be accessed by any other
class in the system. The implementation of the
behaviour for the method cannot be changed by
other classes at this level, although attributes can be
retrieved and modified by other classes.

Quality attributes Aspects of the software that impact how the software
functions such as performance, convenience, and
security.

Requirement A condition or capability that must be implemented in
a product based on your client’s request.

Responsibility A task that a component needs to perform. For
example, a screen might have a responsibility to turn
on.

Reusable Reusability refers to the ability to use existing
products and byproducts of software development,
including code, designs, and documentation, more
than once in the software development process.

Rule of least
astonishment

A rule related to abstraction that says that an
abstraction should capture the essential attributes and
behaviour for a concept with no surprises and no
definitions that fall beyond its scope.

Running Phase A phase in model checking, when the model checker
is run to see how the model conforms to the desired
properties expressed in the Modelling Phase.

Object-Oriented Design | 92
Object-Oriented Design | 92

Sanity checks Quick checks that are easy to do because they come
from very clear and simple logic.

Separation of
concerns

A principle of software design that suggests that
software should be organized so that different
concerns in the software are separated into different
sections and addressed effectively.

Sequence
diagrams

A diagram used to visually represent how objects in a
program interact with each other to complete a
specific task.

Service-oriented
Architecture

A style of software design that examines architectures
for web applications.

Software
architecture

An aspect of the software development process that
examines the high-level aspects of a system.

Software design An aspect of the software development process that
examines the lower-level aspects of a system.

Specialized A subclass with customized or special behaviours.

State The way an object exists at a particular point in time.
The state of an object is determined by the values of
its attributes.

State diagrams A visual technique used to express how a single
object in a system behaves in response to a series of
events in the system.

State model An abstract state machine that can be in one of
various states.

Subclass A subclass is a child class that inherits characteristics
and attributes from another class, but also presents its
own specialized functions to separate it from other
child classes. Subclasses are specialized classes.

Super A keyword in Java that allows a subclass to access the
superclass’s attributes, methods, and constructors.

Superclass A superclass is a parent class that other classes might
inherit characteristics and attributes from.
Superclasses are generalized classes.

Object-Oriented Design | 93
Object-Oriented Design | 93

Technical design The process of design where technical details are
planned out around concepts and components, which
explain how responsibilities are met. Technical design
can be used to create code, often with the help of
technical diagrams.

Technical
diagrams

Provide a visual expression of technical details for how
requirements and concepts will be satisfied in a
software product.

Tightly coupled A kind of design complexity that occurs when a
module is highly reliant on one or more other
modules. Tightly coupled modules are considered
bad design.

Transitions A shift from one state to another, as triggered by an
event.

Type A class denotes a type for its objects. The type
signifies what these objects can do through public
methods.

Unified
Modelling
Language (UML)
class diagram

A visual notation for expressing or communicating
technical design and models in software production.
There are several different kinds of UML class
diagrams.

Whole When several different parts of a thing are brought
together to create a cohesive, working thing. Related
to decomposition.

